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Abstract
This paper describes a general and powerful framework for efficient
runtime invariant checking. The framework supports (1) declarative
specification of arbitrary invariants using high-level queries, with
easy use of information from any data in the execution, (2) power-
ful analysis and transformations for automatic generationof instru-
mentation for efficient incremental checking of invariants, and (3)
convenient mechanisms for reporting errors, debugging, and taking
preventive or remedial actions, as well as recording history data for
use in queries. We demonstrate the advantages and effectiveness of
the framework through implementations and case studies with ab-
stract syntax tree transformations, authentication in a SMB client,
and implementation of the BitTorrent peer-to-peer file sharing com-
munication protocol.

1. Introduction
Program safety, security, and general correctness properties depend
on all kinds of invariants holding during program execution. Even
though static analysis can verify many invariants, many important
invariants are still too difficult to verify automatically using static
analysis. Therefore, it is critical to use dynamic techniques to check
during program execution that these invariants hold. This is known
as runtime invariant checking. It is challenging for at least three
reasons:

1. invariants that relate information at multiple program points
are difficult to specify and to verify at any one point in the
execution,

2. the runtime overhead from invariant checking should be mini-
mized, and

3. imminent violations of critical invariants should be detected
before they occur, and appropriate actions should be taken in
response.

This paper describes a general and powerful framework for
efficient runtime invariant checking. The framework supports (1)
declarative specification of arbitrary invariants using high-level
queries, with easy use of information from any data in the ex-
ecution, (2) powerful analysis and transformations for automatic
generation of instrumentation for efficient incremental checking
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of invariants, and (3) convenient mechanisms for reportingerrors,
debugging, and taking preventive or remedial actions, as well as
recording history data to use in queries. The transformations are
built on InvTS rules [18], which describe how to incrementally
maintain invariants.

We also describe a number of case studies that demonstrate
the advantages of our framework and the effectiveness of ourim-
plementation. The implementation is for Python. The experiments
include checking invariants about (1) abstract syntax trees (AST)
transformations on programs varying sizes between 400 and 16000
AST nodes, (2) Kerberos authentication used by a SMB client writ-
ten in Python, and (3) implementation of network protocols for dis-
tributing files in BitTorrent. In these experiments, all theinvariants
of interest can be expressed easily in our framework, and perfor-
mance results show that our incremental checking scales well on
large applications and complex invariants.

Much research has been done on runtime invariant checking,
including a large variety of languages for specifying the invariants
and methods for efficient instrumentation, including methods for
incremental checking for certain kinds of invariants, as discussed
in Section 5. To the best of our knowledge, no previous work both
supports the generality of the kinds of invariants that our frame-
work supports and achieves the efficiency that our implementation
method achieves.

The rest of the paper is organized as follows: Section 2 gives
an overview of our framework and describes the language for
specifying invariants and actions. Section 3 describes analysis and
transformations for incrementally checking the invariants. Section
4 presents experiments that show the effectiveness and efficiency
of our framework and implementation. Section 5 discusses related
work.

2. Framework
This section presents our framework for specification of invariants
and actions to be taken when they are violated. Invariants are ex-
pressed as boolean conditions involving variables quantified over
collections. Violations of an invariant correspond to tuples contain-
ing values of those variables for which the condition is false. There-
fore, we formulate runtime invariant checking as evaluating queries
that return such sets of tuples. Thus, the basic form of an invariant
checking rule in our framework is

foreach (v1in S1, v2in S2, ... : condition):
action

whereS1, S2, ..., are collections (sets, lists, etc.). The set of tuples
of values ofv1, v2, ..., such thatconditionholds is called thequery
result. action is a statement to be executed for each violation of the
invariant, i.e., for each tuple in the query result.
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For example, the following rule could be used to check that
theusage count field of each instance of theFile class is non-
negative.

foreach (o in extent(File) : o.usage_count < 0) :
report("Error: File ", o, " has negative",

" usage_count.")
stop()

For every classC, extent(C) is a special set defined by our frame-
work to contain the set of currently existing objects of typeC. The
report andstop functions in this example are two functions in the
subject programming language (Python):report takes any num-
ber of arguments and prints the concatenation of their string repre-
sentations, andstop stops the program and drops into a debugger,
allowing the user to examine the state of the program at the point
at which the invariant was violated.

While it is easy to see how to efficiently check simple invariants
like the one above (by inserting checks at all assignments tothe
usage count field), it becomes more difficult even for slightly
more complex invariants. For example, consider a program that
manipulates ASTs, and we want to check that no node has an edge
to itself. Assume that AST nodes are instances of anASTNode class
that declares achildren field. The invariant can be checked using
the rule:

foreach (o in extent(ASTNode) : o in o.children) :
report("Error: ", o, " has a self-edge.")
stop()

Checking this invariant efficiently is more difficult, because alias-
ing implies that it can potentially be violated by any statement that
adds an object to a collection, as in this scenario:x=o.children;
...; x.add(o). Manually writing code to detect such bugs is te-
dious: one must intercept all calls to theadd method of a set, deter-
mine whether the target object equals thechildren field of some
instance ofNode, etc. In our framework, the user writes the simple
rule above, and our system takes care of the rest, generatingcorrect
and efficient code for it.

Queries that involve multiple variables typically involvejoin
conditions, which relate the values of the variables. For example,
suppose the graphs in the previous example should also satisfy the
invariant that every node has at most one incoming edge. Thiscan
be checked using a rule such as:

foreach (n in extent(ASTNode), m in extent(ASTNode),
c in extent(ASTNode) : c in n.children and
c in m.children and n!=m ) :

report("Error: ", c, "is a child of both ",
m, " and ", n, ".")

stop()

Again, it is easy to write this rule in our framework, but it isdifficult
to manually write code that efficiently checks this invariant at run-
time, since this requires maintaining auxiliary data structures with
information about edges, in addition to dealing with the aliasing
issue discussed above.

Some invariants cannot be expressed using queries over extents
and existing sets in the program. For example, consider a commu-
nication protocol. A query cannot refer to the set of all packets sent
by the program, unless the program happens to maintain that set. It
is not an extent, because packet objects are removed from theex-
tent by garbage collection. To support such queries, our framework
supports rules that add code throughout the program. This feature
is similar to aspect-oriented programming, and it can be used to
insert code that maintains additional sets.

The general form of an invariant checking rule is shown in
Figure 1. The meaning of the new clauses is as follows. The syntax

foreach(query) :
action

(de in scope (field decl |method decl)?)∗

(at update
(if condition)?
(de (in scope (field |method)+)∗)?
do (before maint (after maint)?) |

(instead maint)
)∗

Figure 1. General form of an invariant checking rule.

of these clauses is taken from InvTS [18], where they are used
in rules that describe how to maintain invariants; this is why we
useupdate andmaint as suggestive names for the code patterns
in the at and do clauses, but they are not limited to matching
updates and specifying maintenance code. Theat clause contains
a code patternupdate , which may contain subject-language code
and meta-variables. Meta-variables are denoted by prefixing their
name with “$”. For each part of the code in the subject program
that matches the pattern in theat clause, if theconditionin theif
clause is satisfied, then the declarations in thede (mnemonic for
“declaration”) clause are inserted in the program in the specified
scope, and themaint code in thedo clause is insertedbefore or
after the matched code, as specified, or, ifinstead is used in the
do clause, the matched code is replaced with the code in thedo
clause. In theif clause, the condition is built from standard logical
connectives and functions defined for the subject language.For
example,class (expr) returns the class in whichexpr appears,
andtype (expr) returns the type ofexpr. In thede clause,scope
can beglobal or the name of a class, method, package, or file.

Continuing the above example, the following rule could be used
to check an invariant about packets that is expressed in terms of a
set$sent_packets containing all sent packets (a specific example
appears in Section 4). Note that the meta-variable$sent_packets
gets instantiated with a fresh program variable when the program
is transformed.

foreach (... : ... $sent_packets ...) :
report("Error : ...")
stop()

de in global:
$sent_packets=set()

at $x.send($packet)
if extends(type($x),socket)
do before:

global $sent_packets
$sent_packets.add($packet)

3. Analysis and transformations
The straightforward way to implement the framework described
above is, for every query, to ask at every program point “Whatis
the result of the query?”. This is clearly correct, yet very slow, es-
pecially if the size of the sets queried over iterated over islarge. A
better way is to only ask at the program points that could possibly
update the result of the query. This is clearly faster, yet still causes
us to repeatedly reevaluate the query. A better approach is to effi-
ciently maintain the result of the query whenever a set or object the
query depends on changes.

Doing this requires two steps: (1) generating the maintenance
code that will properly maintain the results of the query in the face
of updates to the data the query depends on, and, (2) applyingthe
maintenance code at all places that change the query’s results.
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Step 1 is accomplished by compiling the query into an InvTS
rule [18], which then transforms the subject program so thatit
maintains the query’s value. InvTS (the Invariant-Driven Transfor-
mation System) is a program transformation system that is geared
towards source-to-source transformations that maintain invariants
of the following type: a variable is equal to the result of a query
with respect to all possible updates to the sets and fields thequery
depends on.

Step 2 is performed by InvTS itself. To maintain the results of a
query, InvTS inserts user-provided maintenance code at every loca-
tion that updates the variables the query depends on. The straight-
forward way is to insert maintenance code at every statementin the
program, preceded by a runtime check that verifies that the state-
ment actually updates the data the query depends on. This slows
down the transformed program even when no updates occur, due
to the evaluation of the runtime check at every statement in the
program. InvTS uses control-flow, data-flow, type, and aliasinfor-
mation to evaluate as many of these checks as possible at compile-
time, thus reducing the overhead of maintaining the query result.

Generating maintenance code. As InvTS alone cannot derive
the actual code to maintain the value of the query, we give a
method that, for a class of queries, generates maintenance code that
incrementally maintains the result of these queries. This method is
a subset of the method given in [20].

We generate efficient incremental maintenance code for queries
of the form v1 in S1, v2 in S2, ... | condition. The
condition is a conjunction of predicates and joins. Predicates may
only depend on the variablesv1, v2, etc, and their immediate
fields (v1.a is allowed, butv1.a.b is not), while joins must be
of one of the following forms:v1==v2, v1!=v2, v1==v2.field,
v1!=v2.field, v1.field1==v2.field2, v1.field1!=v2.field,
v1.field in v2.field, andv1 not in v2.field. S1 andS2
must have constant-time membership testing.

There are three kinds of updates that can affect the result of
these queries: the addition of an object to a collection, theremoval
of objects from a collection, and changing the value of a fieldon an
object. We decompose more complicated updates into these simple
updates. We further simplify the problem by replacing field updates
(for both scalar and collection fields) with code that removes an
object from all sets containing it, updates the field, and re-adds it to
all sets. This transformation requires maintaining an auxiliary map
from each object to the sets containing it.

Finally, we note that the query result only increases when ob-
jects are added toS sets (S1, S2) , and the query result only de-
creases when objects are removed from theS sets. Since we only
execute the action body when the result set increases, this means
that we only need to handle the set addition case. However, note
that during set removal we may update auxiliary maps.

Handling element addition. To handle addition of an object to a
S set, we run the query with the correspondingv variable bound to
the object being added. We then generate statements corresponding
to each of the clauses (iteration, predicate, and join) in the query.
The code is generated in the following order:

1. Predicates with all variables bound, generates an if-statement
evaluating the predicate.

2. Iteration with both variables bound, generates an if-statement
with a membership test.

3. Joins with both variables bound, generates an if-statement that
tests membership in a hash-join map.

4. Equality and set-membership joins with one variable bound,
generates a for-statement that iterates over the appropriate entry
in a hash-join map.

5. Iteration with only the set variable bound, generates a for-
statement that iterates over the set.

If a clause does not match one of the conditions in this list then it
cannot be generated. Each generated for-statement binds a variable,
which can cause statements to become generatable or to rise in
priority. As all variables can be bound through iteration, eventually
all clauses will be generated.

Handing joins. For each join, we maintain a hash-join auxiliary
map. For example, if we have the joinv1.parent==v2.name, v1
is bound, andv2 iterates overS2, for each objecto in S2 there is a
mapping fromo.name to o. Maintaining these mappings requires
the generation of additional auxiliary code, which must be run
before the maintenance code given above. This code may be run
in response to addition and removal.

Auxiliary clauses. As auxiliary clauses have the same syntax as
InvTS, all auxiliary clauses (if, do, de, at) are copied intothe InvTS
rule being generated.

Type analysis. Static type analysis can be used to reduce the
number of runtime checks, because if a variable of a given type is
being updated, and variables (or fields) of this type are not used in
the query, then the update cannot affect the result of the query, and
the corresponding runtime check does not need to be performed.

Our type system expands on Python’s type system by making it
more precise. We introduce types that represent constants,lists of
known length, lists of known type, lists of known content, empty
vs. non-empty strings, positive and negative numbers (integers,
floats, etc.), types which are the union of two or more types, etc.
This higher precision, coupled with making the type analysis static
(Python only provides dynamic type analysis), allows InvTSto
evaluate a large number of runtime checks statically. From our
experiments, the overhead reduction due to type analysis isfrom
30% to 100%, as seen in Table 1.

Alias analysis. Alias analysis is also used by InvTS to reduce the
number of runtime checks, as an update to a variable that is not
aliased to a variable or field in the query cannot update it. Clearly,
the more conservative the alias analysis, the less runtime checks
can be removed. That is why we use a flow-sensitive interproce-
dural may-alias algorithm, in contrast to the more conservative,
but easier-to-implement flow-insensitive algorithms suchas Ander-
sen’s.

The alias analysis algorithm we use has time complexity of
O(n4), and is based on the intraprocedural, flow-sensitive may-alias
analysis by Goyal [8]. Goyal’s algorithm is intraprocedural, works
on C, and has a running time of O(n3). Thus, it had to be extended
to handle Python, and to work interprocedurally. This resulted an
increased asymptotic complexity of O(n4), although in practice,
for all programs we have analyzed, we have always observed the
running time increasing quadratically with the size of the program.
From our experiments, the overhead reduction due to alias analysis
is from 30% to 50%, as seen in Table 1.

4. Experiments
To demonstrate that our technique can efficiently verify invari-
ants, we have applied it to invariants from multiple domains: ab-
stract syntax tree transformations, authentication, and protocol im-
plementation. For each invariant, we compare the performance of
the program without any invariant checking; with invariants be-
ing checked incrementally using method described in this paper;
and with invariants checked in a non-incremental manner by re-
evaluating the query from scratch each time an update occurs.
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All experiments were performed on Windows Vista, running on
a Core 2 Duo (Q6600@3.0GHz) machine with 8GB of memory, of
which 6GB were free. For all examples, Python 2.5.1 was used.

4.1 AST transformations

For an abstract syntax tree (AST) to be correct, there are a number
of invariants it must satisfy. For our first two experiments,we check
that no AST node is its own child, and that each AST node is
the child of at most one parent. If an AST transformation system
violates these invariants, it is incorrect.

For these experiments, we apply InvTS to itself to create
checked-InvTS, a version of InvTS that checks to ensure thatpro-
gram transformations do not violate the AST invariants. Checked-
InvTS is then run with a rule-set that transforms subject programs
into single-assignment form. Note that in this case, we are check-
ing the correctness of checked-InvTS, rather than the programs it
is applied to.

Not own child. In an abstract syntax tree, a node may not have
itself as a child. We haver written a rule that reports cases where this
invariant is violated, then stops the program so that the programmer
can investigate:

foreach (o in extent(ASTNode) : o in o.children ) :
report(o, " is a child of itself!")
stop()

Figure 2 shows that the running time of checked-InvTS when
verifying the not own child invariant is within a constant factor
of the running time of the uninstrumented version. The overhead
incurred by the instrumentation is close to 70%. About half of this
overhead was caused by the overhead required to maintain extents,
while the other half was the cost of maintaining invariants.

We do not give the running time of the non-incremental in-
strumentation, as not even the smallest experiment was ableto
complete in the time limit of 20 minutes. Since the query is run
each time an AST node is created or updated, we expect the non-
incremental version to incur an asymptotic slowdown. Incremental
instrumentation eliminates this penalty, rendering invariant check-
ing practical.

No shared child. In an AST, no two parents may refer to the same
child. The following rule checks for violations of this invariant:

foreach (n in extent(ASTNode), m in extent(ASTNode),
c in extent(ASTNode) : c in n.children and
c in m.children and n!=m ):

report("Child ", c, "is a child of both ",
m, " and ", n, "!")

stop()

As this invariant accesses multiple extents, hash joins arerequired
to evaluate it efficiently.

Figure 2 shows that the running time of the incrementally in-
strumented program remains less than double that of the uninstru-
mented version. In contrast, the non-incremental instrumentation
would be cubic in the number of nodes currently alive in the pro-
gram, as it iterates over three extents of nodes. This leads us to the
estimate that, in the best case, the non-incrementally instrumented
program is O(#node3) worse than the uninstrumented one. This,
coupled with the fact that the smallest program we look at is over
400 AST nodes, accounts for the fact that all experiments with non-
incremental instrumentation timed out. When we manually intro-
duced a bug that would assign the same child to multiple parents,
checked-InvTS would stop when run, and give us a debugging shell.

Overall, these experiments show that verifying invariantsat run-
time can be efficient (with overhead smaller then 80%) for even
complex queries that involve multiple joins and membershiptests.
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Figure 2. Running times of InvTS normalized to the running time
of the non-instrumented version.

We also see that when joins used by the query have a high selectiv-
ity, as these do, the running time of the instrumented program is not
very dependent on the query, but more so on the number of classes
for which we maintain extents.

4.2 Authentication

Another important class of invariants are those required toconfirm
that authentication protocols are being performed correctly. We
performed two experiments involving the Kerberos authentication
used by pysmb, a SMB client written in Python. These check that
all packets sent are authenticated, and that authentication does not
occur more frequently than is necessary.

Require valid ticket. For our first experiment, we want to verify
that there is a valid kerberos ticket associated with each packet.
This invariant needs to remain true until the packet is actually sent.
To find violations of it, we keep a set of packets being sent, and
report an error if a packet in the set is associated with an invalid
ticket.

foreach (sp in $sending_packets,
kt in extent(KerberosTicket) :
kt.invalid and kt.ip==sp.target_ip ) :

report("Sending ", sp, " with invalid ticket!")
stop()

de in global:
$sending_packets=set()

at $x.send($p):
if type($x)==asyncore.dispatcher:
de in class type($x) in function handle_write($arg):

if $arg in $sending_packets:
$sending_packets.remove($arg)

do after :
if $p not in $sending_packets:

$sending_packets.append($p)

This rule tracks all sends of data over asynchronous sockets, and
stops the program when a packet was sent to a server with an in-
valid Kerberos ticket. The de and do clauses work in the following
manner: When asend method call is encountered, the packet be-
ing sent is added to the $sendingpackets queue. It is removed from
there once the packet is actually sent, which may not be necessarily
immediate. This is detected by intercepting the handlewrite call-
back in the class subclassing asyncore.dispatcher. This callback is
called by Python when a packet is actually sent out over the given
socket.
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When we ran this on pysmb, while transferring a 10GB file over
a 100Mbit connection, the average CPU load increased from 3.6%
to 11.7%. The throughput remained the same because the program
was IO-bound in both cases. The increase is due to the join and
the fact that many Kerberos tickets may have a matching IP. A
straightforward implementation increased CPU usage to 97%, and
reduced the throughput of the program by 73%, as pysmb became
CPU-bound and not IO-bound. The times taken by the program to
transfer the file were 1302 seconds for the uninstrumented version,
1351 seconds for the incrementally instrumented version, and 6321
seconds for the non-incrementally instrumented version.

Repeated authentication. It is bad practice for a program to
request tickets from the Kerberos server long before the currently
valid ticket expires. Thus, a useful invariant to check is that a
successful authentication is not repeated until it expiresor times
out. A timeout occurs when there has been no activity in the last
300 seconds. To verify this invariant, we need to keep track of valid
kerberos tickets, of kerberos requests, and of SMB activity.

The query we use is a nested query, with the inner query com-
puting the latest packet sent to a given host, and the outer query
doing a join on all pairs of currently existing kerberos tickets. The
max aggregate is maintained using a heap.

foreach (k_old in extent(KerberosTickets) ,
k_new in extent(KerberosTickets) :
k_old.valid and k_new.valid and
k_old.timestamp<k_new.timestamp-10 and
k_old.ip==k_new.ip and
k_new.timestamp-max([p.time

for p in $sent_packets
if p.target_ip==k_new.ip]) < 300-10):

report ("Reauthenticated to host ", k_new.ip )
stop()

de in global:
$sent_packets=set()

at $x.send($p)
if type($x)==asyncore.dispatcher
do after :

$sent_packets.add($p)

When run on pysmb, while transferring a 10GB file over a
100Mbit connection, the average CPU load increased from 3.6%
to 17.9%, mainly due to the need to maintain a heap per IP address,
and an additional join over the previous example. Using specific
domain knowledge, the heap could be avoided: we could just keep
a map of the latest packet sent to each IP address. We can do this
because packets sent later are always later (time, and by extension,
p.time, is monotonic). A rule modified in such a way is less easily
adapted towards other uses, though. Note that even with the main-
tenance of the heap, the instrumented program is still IO, and not
CPU bound. Just like before, to make it CPU bound requires check-
ing invariants in a non-incremental manner. This results ina 96.9%
CPU load (indicating that the program is CPU bound), and a corre-
sponding increase in running time from 1302 to 8750 seconds.

The pysmb examples show that instrumenting complex pro-
grams in ways not assumed by their creators is easily done with
our framework due to the ability to specify complex program trans-
formations, such as maintaining the set of sent packets, or the set of
packets waiting to be sent. It also demonstrates that complex con-
ditions, including nested queries, are supported by this framework,
and their use does not cause excessive overhead.

4.3 Protocol implementation

BitTorrent (http://download.bittorrent.com/dl/) is a protocol for
distributing files. Its advantage over plain HTTP is that when mul-
tiple downloads of the same file happen concurrently, the down-

loaders upload to each other, making it possible for the file source
to support very large numbers of downloaders with only a mod-
est increase in its load. It splits torrents into chunks, downloads
all chunks from (likely different) peers, and then reassembles the
original file(s) from chunks. Implementing a relatively complex
protocol like BitTorrent may be error-prone, so we use our method
to instrument an implementation and check it for potential errors.

No duplicate data. While it does not necessarily imply an error
if one receives the same piece of data from two sources, doingso
too often may mean that the client is using bandwidth inefficiently.
To check for this, we use a rule that detects when the same data
is received from two or more distinct sources, and logs the event
without stopping the program. The log could then be later analyzed
to determine if the duplicate data indicated a larger bug.

foreach (p1 in $incoming_queue, p2 in $incoming_queue:
p1.source_ip!=p2.source_ip and
p1.type=="incoming" and p1.payload==p2.payload):

report("Receiving same data from peers ",
p1.source_ip, " and ", p2.source_ip)

de in global:
# A queue supporting O(1) membership tests,
# holding at most 100000 packets
$incoming_queue=queue(max_length=100000)

at $x.type=$s
if $s=="incoming" and type($x)==Packet
do after :

if $x not in $incoming_queue:
$incoming_queue.append($x)

The rule makes sure that we get notified that we receive the
same payload from two different IP addresses. It adds a queueinto
which all incoming packets get added upon construction, andthen
queries over this queue.

Experiments involved receiving a 10GB file from 30 peers, over
a 100Mbit connection. We measured CPU load to determine the
impact of the debugging rule. Without the rule, the average CPU
load was 28.3%. With the rule applied, the CPU load increased
to 36.1%. The small increase is due to the high selectivity of
the p1.payload==p2.payload condition. Internally, the join is
a combination of a reverse map lookup and hash join. Just likewith
pysmb, neither the instrumented, nor the uninstrumented versions
were CPU-bound, both remained IO-bound. Allowing arbitrary
code in the body of theforeach loop allows us to very quickly
write a rule that just logs undesirable behaviour without stopping
the program, as we have done before.

No packet modification in transit. To verify that the correct data
is being sent between peers, we check the following invariant: A
packet sent from one peer must be received by another peer without
a change in the payload.

We check this invariant by creating a server to which peers send
summaries of the packets they send and receive. These packets are
put into a set of packets, stored on the server. We write a query that
detects when packets of the same chunk have a different payload
(We compare the MD5 hashes of the objects).

BitTorrent uses instances of Packets (defined below) to ex-
change data, and, as we do not want the actual payload, but its
MD5, we set the body field of the packets to None.

class Packet:
def __init__ (self):

self.md5=None
self.source=None
self.target=None
self.chunk=None
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No Check Incremental No Type Analysis No Alias Analysis Non-Incremental
pysmb - Require valid ticket 3.6% (1302s) 11.7% (1351s) 19.7% (1819s) 14.1% (1601s) 97.3% (6321s)
pysmb - Repeated authentication 3.6% (1302s) 17.9% (1535s) 31.7% (2011s) 23.3% (1943s) 96.9% (8750s)
BitTorrent - No duplicate data 28.3% (1771s) 36.1% (1779s) 63.8% (1790s) 36.3% (1830s) 99.8% (3210s)
BitTorrent - No Packet Modification 2.7% (1783s) 3.3% (1687s) 3.9% (1763s) 3.4% (1805s) 93.1% (1801s)

Table 1. CPU utilization and wall time taken for experiments under differing optimizations.

self.sent=False
self.received=False
self.body=None

The actual server is written as a single class with a recset field
that maintains all packets sent and received by BitTorrent peers. We
omit code that actually sets up listening on UDP port 636 (theport
we chose), etc, as that code is very straightforward. The following
query actually verifies that the invariant is not violated:

foreach ($f in self.rec_set,$t in self.rec_set :
$f!=$t and
$f.source==$s.source and $f.source!=None and
$f.target==$s.target and $f.target!=None and
$f.chunk==$t.chunk and $f.chunk!=None and
$f.sent and $t.received and
$f.md5!=$t.md5 and $f.md5!=None):

report ("Packet sent from ", $f.source, " to ",
$f.target, " changed in transit!")

stop()

Finally, we present two InvTS rules that modify the BitTorrent
program to send the information needed for invariant verification
to the server. The rules state that a socket should be opened to the
server once per program, and that anytime a packet is writtento any
socket, or read from any socket, the packet (minus the body) should
be sent to the server. The rule for handlingsend is the same rule as
for handlingrecieve, with recieve replaced withsend.

at $x.receive($p)
if type($x)==asyncore.dispatcher
de in global:

import socket
#Open a socket to server on 192.168.17.46 port 636
$checking_socket=socket.open_udp(192.168.17.46,636)
in global in function(myreceive(socket,packet):

global $checking_socket
$body=packet.body
$arg.body=None
$checking_socket.send(packet)
packet.body=$body

do instead:
myreceive($x, $p)

After applying the query and rules to the BitTorrent client and our
server, we then benchmarked the CPU utilization of the clients
and the server (which were running on the same computer). With
5 BitTorrent clients and the server running, the CPU utilization
increased from 73 to 78 percent. When the clients were measured
in isolation, the CPU utilization of a single client (with the other
4 clients, and the server, if running, run on another system)was
11%, vs 10% for the untransformed client. The server, when ran
on the test machine (with the 5 clients run on a different machine)
utilized 3.3% of the CPU with the instrumentation enabled, versus
2.7% with no instrumentation. This is a 13% penalty for verifying
the invariant.

On a reliable connection we found no problems. On a connec-
tion that was bad (where we manually randomly injected changes

into the packets sent by the peers) we found the errors beforethe
BitTorrent verification algorithm, which requires bigger chunks,
would find them.

Effect of optimizations Table 1 shows the cpu utilizations and
running times of the pysmb and BitTorrent examples under differ-
ent implementation options. From this data, it is easy to seethat the
non-incremental implementation is far worse than any otherver-
sion. Disabling the use of type or alias analysis also produces a
noticeable slowdown.

5. Related work
There are two different areas this paper touches: runtime invariant
verification [7], and incremental query result maintenance.

There is a large body of systems whose purpose is to ver-
ify temporal properties of subject programs. These includeJava-
MaC [12, 13], JPAX [11] , JNuke [1], and EAGLE [4]. These sys-
tems are very different from our system in that the invariants that
they verify are written as some subset of LTL. Our system doesnot
support writing invariants in terms of LTL, although, as oursystem
supports comprehensions, extents, and joins, a subset of LTL can
be emulated. The pysmb example does so by maintaining history
and specifying queries over it. While this does incur a performance
penalty greater then dedicated systems designed to test LTL-based
invariants, it is not a very significant performance penalty.

The category into which our system fits best is tools that use a
side-effect free subset of their host language, extended with various
operators such as quantifiers or set operations, to specify invariants
to verify. The invariant specification languages include JML [17],
Spec# [3], and Jahob [15]. These languages are specificationlan-
guages. They are used to describe the invariants to be verified, and
they rely on other tools to actually do the verification. For JML and
Spec# there exist tools that allow the user to combine/compile the
specification of the invariant and the subject program into acom-
piled program that, at runtime, verifies that the specified invariants
hold. For Spec#, such a system is Boogie [2], for JML such systems
include jmlc [6], jass [5], jmle [14], and DITTO [21]. Jahob has a
run-time verifier in development [23].

Spec# does not support comprehensions[23]; nor does not sup-
port extents. As such, it cannot easily encode the invariants we wish
to verify. JML supports set comprehensions, quantifiers, and other
features. It does not natively support extents [16]. Jahob supports
both comprehensions and extents (as a subset of the AliveVariables
set). The language presented in this paper supports both setcom-
prehensions and extents. It is worth noting that support forextents
is difficult to emulate without having support for liveness testing,
as the trivial method of adding all created instances to a setdoes
not take into account garbage collection.

The JML compilers jmlc, jmle, and jass all support a large sub-
set of JML, including comprehensions. But, they evaluate com-
prehensions in a straightforward manner, by recomputing them
whenever they are encountered. This is in contrast with our sys-
tem, which provides incremental maintenance of the value ofthe
set comprehensions it supports. DITTO does provide incremental
maintenance of some JML expressions, but it cannot incrementally
maintain set comprehensions [21].
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Another system, JQL [22], extends Java to support both compre-
hensions and extents, although it does not do this for the purposes
of maintaining invariants, but rather for the purposes of querying
over collections in Java. Recent work on JQL adds incremental
maintenance of JQL queries in the face of updates to the data they
depend on. The fact that our system is designed with only invariant
verification in mind allows us to more efficiently maintain invari-
ants. For example, it is easier for us to handle removal of elements
from the sets that the query depends on. We support a marginally
larger set of conditions on queries: we can incrementally main-
tain query results for queries that contain a condition of the form
a in b.f. Also, theat and de clauses allow us to do program
transformations that maintain datastructures that would be unavail-
able to a query language, such as a set of all previously sent packets.

There has been a great amount of work done on incrementally
maintaining invariants, e.g, [9, 19, 10, 18, 21, 20]. From these,
especially relevant to this paper is the system we developed, (In-
vTS) [18], that applies rules that incrementally maintain query re-
sults. We use InvTS to apply rules that we derive from the user-
provided queries that specify the invariants the user wishes to ver-
ify. The advantage of InvTS is its utilization of static analysis to
reduce the runtime overhead of incrementally maintaining the re-
sults of queries. The rules we apply are automatically derived in
a manner inspired by [20], which, while not being the only wayto
derive rules that perform incremental maintenance, turnedout to be
a very good fit to the queries whose results we wanted to maintain.
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