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Abstract
A promising trend in software development is the increasing adop-
tion of model-driven design. In this approach, a developer first con-
structs an abstract model of the required program behavior in a
language, such as Statecharts or Stateflow, and then uses a code
generator to automatically transform the model into an executable
program. This approach has many advantages—typically, a model
is not only more concise than code and hence more understandable,
it is also more amenable to mechanized analysis. Moreover, auto-
matic generation of code from a model usually produces code with
fewer errors than hand-crafted code.

One serious problem, however, is that a code generator may pro-
duce inefficient code. To address this problem, this paper describes
a method for generating efficient code from SCR (Software Cost
Reduction) specifications. While the SCR tabular notation and tools
have been used successfully to specify, simulate, and verify numer-
ous embedded systems, until now SCR has lacked an automated
method for generating optimized code. This paper describes an ef-
ficient method for automatic code generation from SCR specifica-
tions, together with an implementation and an experimental evalua-
tion. The method first synthesizes an execution-flow graph from the
specification, then applies three optimizations to the graph, namely,
input slicing, simplification, and output slicing, and then automat-
ically generates code from the optimized graph. Experiments on
seven benchmarks demonstrate that the method produces signifi-
cant performance improvements in code generated from large spec-
ifications. Moreover, code generation is relatively fast, and the code
produced is relatively compact.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—tools; D.3.4 [Programming
Languages]: Processors—code generation, optimization

General Terms Performance, Languages

Keywords code generation, code synthesis, SCR, requirements
specifications, formal specifications, optimization
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1. Introduction
Originally formulated to document the requirements of the flight
program of the U.S. Navy’s A-7 aircraft [14], SCR (Software Cost
Reduction) is a tabular notation for specifying the required behavior
of software systems. The SCR notation, which has an explicit state
machine semantics [13], has been used by many organizations in
industry and in government (for example, Lockheed [7], the Naval
Research Laboratory [11, 18], and Ontario Hydro [23] ) to specify
and analyze the requirements of practical systems, including flight
control systems [7, 22], weapons systems [11], space systems [5],
and cryptographic devices [18]. The SCR toolset [10] provides a
user-friendly approach to writing requirements specifications and
a suite of analysis tools for analyzing them. The toolset includes a
consistency checker [13], a simulator [12], a model checker [11],
theorem provers [2, 4], and an invariant generator [15, 17].

One major advantage of writing specifications in a language
such as SCR is that the developer can verify automatically that criti-
cal properties hold and can validate using simulation that the speci-
fication captures the intended behavior. This provides a high degree
of confidence in the correctness of the specification. One major ad-
vantage of code automatically generated from specifications is that
the code usually contains fewer errors than hand-crafted code.

Missing from the current SCR toolset, however, is a tool that can
generate optimized programs from SCR specifications. This paper
describes a practical method and tool which transform SCR spec-
ifications into efficient source code. Optimization is a necessary
part of code generation from specifications. Because the goal of
specification writers is to produce a clear and concise specification,
efficiency of the implementation is rightfully not a major concern.
To make the resulting implementation efficient, a code generator
needs to include optimization. This is especially important in gen-
erating code for embedded systems, which may be limited in both
processor power and memory.

This paper describes a method that transforms an SCR speci-
fication into an execution-flow graph, a representation suitable for
optimization, and then introduces a systematic method for creating
the graph, for optimizing it, and for generating code from the re-
sult. Our techniques, which have been implemented in a tool called
OSCR (Optimizer for SCR), are fully automatic, generate code ef-
ficiently, and produce code that is efficient and relatively compact.
The paper is organized as follows: After Section 2 reviews SCR,
Section 3 introduces the execution-flow graph representation of an
SCR specification and our optimization method. Section 4 presents
a method for synthesizing an execution-flow graph from a specifi-
cation, and Sections 5–7 describe three optimization techniques—
namely, input slicing, simplification, and output slicing. Section 8
describes how code is generated from the execution-flow graph.
Section 9 describes the OSCR tool, and presents an experimental
evaluation of our method. Finally, Section 10 discusses related and
future work, and presents some conclusions.
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2. SCR Specifications
In SCR, the required system behavior is defined as a relation on
monitored and controlled variables, which represent quantities in
the environment that the system monitors and controls. The en-
vironment nondeterministically produces a sequence of monitored
events, where a monitored event signals a change in the value of
some monitored variable. The system defined by an SCR specifica-
tion begins execution in some initial state and then changes state in
response to monitored events. The SCR semantics [13] make two
basic assumptions. The One Input Assumption allows at most one
monitored variable to change from one state to the next, while the
Synchrony Assumption requires that no new monitored event arrive
until the system has processed the current monitored event.

An SCR specification usually contains two types of auxiliary
variables: mode classes, whose values are called modes, and terms.
Each mode defines an equivalence class of system states useful both
in specifying and in understanding the required system behavior. A
term is a state variable defined in terms of monitored variables,
mode classes, and possibly other terms. Mode classes and terms
are used to capture the system’s input history—the changes that
occurred in the values of the monitored variables—and help make
the specification more concise.

In the SCR model [13], a system is represented as a state
machine Σ = (S,S0, E

m, T ), where S is the set of states, S0 ⊆ S
is the set of initial states, Em is the set of monitored events, and
T : Em × S → S is the transform describing the allowed state
transitions. A state is a function that maps each state variable, i.e.,
each monitored or controlled variable, mode class, or term, to a
type-correct value; a condition is a predicate defined on a system
state; and an event is a predicate requiring that two consecutive
system states differ in the value of at least one state variable.

The notation “@T(c) WHEN d” denotes a conditioned event,
which is defined by

@T(c) WHEN d
def
= ¬c ∧ c′ ∧ d, (1)

where the unprimed conditions c and d are evaluated in the current
state and the primed condition c′ is evaluated in the next state. The
state in which c is evaluated is called the prestate and the state in
which c′ is evaluated the poststate. In this definition, ¬c ∧ c′ ∧ d
is an example of a two-state expression because it is evaluated in
both the prestate and the poststate, while ¬c∧ d is an example of a
one-state expression because it is evaluated in a single state.

The SCR Tables. To compute the next state, the transform func-
tion T composes the table functions derived from the condition ta-
bles, event tables, and mode transition tables in SCR specifications
[13]. These tables define the values of the dependent variables—the
controlled variables, mode classes, and terms in the specification.
For T to be well-defined, no circular dependencies are allowed in
the definitions of the dependent variables. The variables are par-
tially ordered based on their dependencies in the new state.

Each table defining a term or controlled variable is either a
condition table or an event table. A condition table maps a mode
and a condition in the next state to a variable value in the next state,
whereas an event table maps a mode and a conditioned event in the
current state to a variable value in the next state. Some SCR tables
may be modeless, i.e., they define the value of a variable without
referring to any mode class. A table defining a mode class is a
mode transition table, which associates a source mode and an event
with a target mode. The formal model requires the information in
each table to satisfy certain properties, guaranteeing that each table
describes a total function [13].

Proper SCR Style. To be well-formed, an SCR specification must
satisfy the definitions and properties above. Another important
property of an SCR specification is that it use modes effectively.

current mode new mode
setting event setting’

disabled @T(switch on) enabled

enabled @T(not switch on) disabled

Table 1. The mode transition table defining setting.

sensed >= target sensed < target

desired = False True

Table 2. The condition table defining desired.

setting = disabled True False
setting = enabled not desired desired

heat = False True

Table 3. The condition table defining heat.

High-quality SCR specifications use modes to partition the system
states into equivalence classes. In a given mode, the system will
react differently to a given input or sequence of inputs than it will
react in a different mode. While our method produces correct code
for any well-formed SCR specification, our optimizations work
best on SCR specifications that use modes effectively and that
define a modest number of modes and a small number of mode
classes.

Running Example. To demonstrate our method, we present a
simple SCR specification of a thermostat. This specification has
three monitored variables and three dependent variables. The mon-
itored variables are target, the target temperature set by the
user; sensed, the temperature sensed by the environment; and
switch on, which is true when the user turns on temperature con-
trol and false otherwise. Tables 1–3 define the three dependent
variables in this specification, setting, desired, and heat. Ta-
ble 1 is a mode transition table defining the mode class setting,
which determines whether the system is controlling the temperature
(setting = enabled) or not (setting = disabled). Table 2
is a modeless condition table defining a term desired which is
true when heating is desired (i.e., the sensed temperature is less
than the target temperature set by the user) and false otherwise.
Table 3, a moded condition table, defines the controlled variable
heat, setting it to true when setting = enabled and desired
are true, and to false otherwise.

This specification has been designed to demonstrate our opti-
mizations. It is stylistically proper SCR, as the mode class setting
changes only when the user changes switch on, a rare occurrence.
At the same time, it is not the minimal specification that we could
write; for example, the variable desired could be eliminated and
its use in defining heat could be replaced by the conditions defin-
ing desired. The reason we use two variables is to demonstrate all
three optimization techniques.

Each SCR table consists of a number of cells, each containing
a logical expression. Prior to code generation, each table is trans-
lated into an internal form, which represents the information in each
cell as the conjunction of a logical expression and an assignment.
Both the logical expression and the assignment are two-state SCR
expressions, with logical expressions in cells extracted from con-
dition tables represented in the poststate. The logical expression
representing each cell qualified by a mode is the conjunction of
the mode (e.g., setting=enabled) with the expression in the cell.
SCR events are represented in the form shown in (1). This trans-
formation allows us to treat one- and two-state expressions in the
same manner.

136



Figure 1. The initial execution-flow graph created for the thermo-
stat specification. Circles represent header nodes, diamonds switch
nodes, and rectangles table nodes. Edges leaving switch nodes are
labeled with the assignment that occurs, if any.

3. The Execution-Flow Graph
The key to producing optimized code from an SCR specification
is to express the transform function in many forms, where each
form is specialized for some subset of possible transitions. If only
a single form was used for all transitions, we could only exploit
redundancy found in the single transform function. While such an
approach could lead to small improvements in efficiency (as sug-
gested in [16]), producing different forms from the transform func-
tion allows for much larger improvements. By creating a represen-
tation of the transform function specialized for each kind of tran-
sition, we trade an increase in code size for a decrease in the time
needed to evaluate the transform function.

To produce specialized representations of the transform func-
tion, the tabular representation of an SCR specification is no longer
sufficient. Specialized representations are needed that describe 1)
the mode the system is in during the prestate, 2) the mode the sys-
tem will enter in the poststate, and 3) the input that caused the tran-
sition to occur. A representation of an SCR specification suitable
for generating optimized code is an execution-flow graph, a control-
flow graph that explicitly represents the modes the system is in
while awaiting input, and the calculations that take place when a
state transition occurs. This graph describes an abstract system that
pauses execution to wait for input, rather than the event-driven sys-
tem that will eventually be implemented. The graph contains three
types of nodes: header nodes, which represent program states in
which the system is waiting for input; switch nodes, which rep-
resent the computation of new values of mode classes; and table
nodes, which represent the computation of new values of other
dependent variables. Edges in the graph indicate control flow be-
tween these nodes, with the choice of which edge is traversed de-
termined by the node that is exited. As an example, Figure 1 shows
the execution-flow graph we initially construct for the thermostat
specification. The three classes of nodes are described in more de-
tail below:

• A header node represents the set of all program states in which
the program is waiting for input. Each header node is associated
with a set of modes, one for each mode class. There is a single
unique header node for each set of modes. This header node
represents all states in which the program is in the set of modes
associated with that header node. If the specification does not
contain any mode classes, the execution-flow graph created
from that specification will have only a single header node,
representing all states of the SCR state machine. Header nodes
have either a single outgoing edge that can be used for all inputs,
or one outgoing edge for each monitored variable, allowing

the transform function to be specialized for that input. Header
nodes are the only node class with multiple incoming edges.

• A switch node represents the computation of the value of a
mode class during a transition. These nodes, which allow con-
trol to move along a branch based on the computed value of
the mode class, are necessary to ensure that control reaches
a header node corresponding to the newly computed mode.
Thus switch nodes allow us to encode mode transitions into the
execution-flow graph.

A switch node represents the computation of a single variable
value. Each switch node contains one or more branches, with
each branch labeled by a logical expression and an assignment.
When an expression evaluates to true, then the assignment is
performed. When no expression evaluates to true, no assign-
ment occurs. The logical expressions associated with different
branches of a switch node must be disjoint, as this is a property
of well-formed SCR specifications [13]. Each switch node has
one outgoing edge for each branch, and one outgoing edge used
when no logical expression is valid. If an expression evaluates
to true, control is transferred from the switch node along the
edge associated with that expression.

• Table nodes represent all other computations. Each table node
is associated with a number of cells. Each cell contains a two-
state expression and an assignment that is executed if the ex-
pression evaluates to true. This representation is used for cells
from both condition and event tables. As with the branches in
switch nodes, the expressions associated with the cells repre-
sented in a table node must be disjoint. Also associated with
each table node is a tag that indicates if the table is complete,
meaning that exactly one of the logical expressions must be sat-
isfied whenever the table node executes. This flag is initialized
to true for condition tables. (One property of a condition table
is that, in any state, exactly one logical expression in a cell is
always true.) The flag can also be set to true if it is determined
that a cell in the table will always execute. Table nodes have a
single outgoing edge, indicating the next node to be executed.

Execution-Flow Graph Based Code Generation Method. OSCR
generates optimized code in five phases, with all but the first and the
last being optional. Phase 1 builds the execution-flow graph from
the SCR specification. Phase 2 applies input slicing to this graph,
removing switch and table nodes updating variables that cannot
change for a given input. Phase 3 uses the graph to simplify table
and switch nodes. Phase 4 uses output slicing to identify table and
switch nodes that can never contribute to the output of the system
and eliminates them. Finally, in Phase 5, source code is generated
from the graph.

4. Building the Execution-Flow Graph
To build an execution-flow graph from a SCR specification, we
first determine the set of mode classes in the specification. We
then topologically sort the dependent variables in the specification,
finding an order in which they can be correctly evaluated. A single
header node corresponding to the initial modes of the system is
created and added to a worklist. We then build subtrees of the
execution-flow graph starting at each node in the worklist, and
ending at header nodes reachable from that node. These subtrees
contain switch and table nodes. When a new header node is created,
it is added to the worklist. This process continues until the worklist
is empty.

Finding Modes. The first step in building the execution-flow
graph is to identify the mode classes in the specification. Normally,
this is simple, given that the specification explicitly defines each
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worklist = an empty list of header nodes.
start = a set of mappings between modeclasses and their

initial modes.

find header(start) — This creates the initial header node, and
adds it to worklist.

while worklist is not empty:
pop header from worklist
the next node for header for all inputs =

efg build(topo deps, modes from header, { })
done.

function find header(state):
if a header node is found for state:

return it
else:

create a new header node for state
add it to the worklist
return it

function efg build(deps, prestate, poststate):
if deps is empty:

return find header(poststate)

dep = the first item in deps
new deps = all other items in deps

if dep in modeclasses:
create a new switch node s

for each predicate and assignment in table of dep:
target = efg build(new deps, prestate,

poststate ∪ { dep �→ val })
add a branch to s that performs assignment when

predicate is true.
add an edge for that branch from s to target

target = efg build(new deps, prestate,
poststate ∪ { dep �→ prestate(dep) })

the default edge for s is to target
return s

else:
create a table node t from the table for dep
the next node for t =

efg build(new deps, prestate, poststate)
return t

Figure 2. Pseudocode for an algorithm that builds an execution-
flow graph. mode classes are the set of mode classes in the
specification, while topo deps is a list of the dependent variables
in the specification, topologically sorted by poststate dependencies.

mode class and its modes. However, sometimes a mode class is not
used with proper style. In this case, the mode class is reclassified as
a term variable with an enumerated type. When mode classes are
mentioned in the rest of this paper, the reference is to mode classes
that have not been reclassified as terms.

Topological Sort of Dependent Variables. Next, all of the depen-
dent variables are topologically sorted based on their new-state de-
pendencies. Variable a depends on variable b in the new-state if
b′ is used in the computation of a′. The variables are topologi-

cally sorted to ensure that each variable is computed after all of the
variables whose values it depends on have been computed. Such a
topological sort is always possible for a well-formed SCR specifi-
cation. Because the new-state dependencies are partially ordered,
more than one topological ordering of the dependent variables is
possible. We choose an ordering in which mode classes and vari-
ables they depend on are evaluated before other variables, as this
maximizes the amount of information known during the simplifi-
cation phase. Our method arbitrarily chooses a topological order
satisfying this condition.

Initial Header Node. The next step determines the initial set of
modes. These are easily determined from the specification. An
initial header node corresponding to those modes is created and
added to the header node worklist.

Worklist Algorithm. Finally, the rest of the graph is constructed.
To accomplish this, a header node is extracted from the worklist,
and a tree is constructed of execution-flow graph nodes represent-
ing all transitions out of that node. This process is repeated until all
header nodes have been processed.

Recursively Building Trees. Trees of nodes are built recursively
by efg build, a function that takes as input a (possibly empty)
list of dependent variables, the set of modes the system was in
in the prestate, and a set of modes that the system will enter in
the poststate. This function returns an execution-flow graph node,
often creating a new node in the process.When called with the
topologically-ordered list of dependent variables, the set of modes
corresponding to a header node, and an empty set of poststate
modes, the function returns an execution-flow graph node that can
be executed next, for all inputs, when the system is at that header
node. Three cases define efg build, each returning one of the
node types:

1. When the list of dependent variables is not empty, and the first
dependent variable in the list is not a mode class, a table node
is constructed from the SCR table defining the value of that
variable. The single outgoing edge points to a node returned
by efg build and called with the rest of the list (that is, the
list without the first node), and the same prestate and poststate
modes.

2. When the first variable in the list is a mode class, a switch
node is constructed. This node has a branch corresponding to
each row of the mode class table, with the expression labeling
each branch corresponding to the expression found in the mode
transition table, and the assignment being the newly-entered
mode. For each branch we create one outgoing edge to the
result of efg build, which is called with the rest of the list,
the same prestate, and the poststate updated with a mapping of
the mode class to the new mode. We also create a default edge
that is executed when no branch is taken. This edge reaches the
result of efg build, called with the rest of the list, the same
prestate, and the poststate updated by mapping the mode class
to the mode it had in the prestate.

3. Calling efg build with an empty list indicates the end of a
transition. At this point, the header node must be found which
represents the state in which the program waits for the next
transition to begin. This is done by finding the header node
corresponding to the set of poststate modes that efg build is
called with. This set contains one mode for each mode class, as
all dependent variables must be processed before a header node
can be created. If a header node corresponding to this set of
poststate modes exists, it is returned. Otherwise, a new header
node corresponding to these modes is added to the worklist, and
then returned.
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An empty worklist indicates that construction of the execution-
flow graph is complete. While code can be directly generated from
this graph, there is little advantage in doing so. Indeed, without
further optimization, such code would almost certainly run more
slowly, given that the graph is larger then the original specification
by a factor quadratic in the number of combinations of modes in the
specification. Representing modes in the graph makes information
about modes explicit, which will allow optimization to begin.

The execution-flow graph in Figure 1 is the execution-flow
graph that our method generates from the thermostat specification.
It contains two header nodes, one for each of the two modes of
setting. The node following each header node is a switch node
representing the evaluation of setting. Three edges leave each
switch node, two for the rows in the mode transition table, and one
for the case in which the mode does not change. At this phase, the
graph still contains impossible branches (such as a change from
enabled to enabled). These branches will be eliminated dur-
ing simplification. Along each of the branches leaving the switch
nodes, table nodes computing desired and heat are executed be-
fore the header node corresponding to the new value of setting
is reached. In the initial graph, new values are computed for every
dependent variable along every path between header nodes. In the
next three sections, we describe how many of these computations
can be eliminated.

5. Input Slicing
Input slicing is a form of forward slicing [27] that eliminates parts
of the program that do not depend on a variable of interest. To spe-
cialize the representations of the transform function based on the
program inputs, our method applies input slicing. Input slicing al-
lows us to improve performance by eliminating nodes that update
variables that cannot change for given inputs. It also adds infor-
mation to the execution-flow graph that can be exploited in later
phases.

Particularly useful during the input slicing process are update
dependencies [3]. The set of update dependencies of a dependent
variable contains the smallest set of variables such that at least
one of those variables changes every time the dependent variable
changes. The update dependencies of a variable are always a subset
of new-state dependencies. Event and mode transition tables may
have sets of update dependencies that are smaller than their sets
of new-state dependencies. Specifically, if e and f are expressions,
then when an expression has the form (not e) and e′ and f or the
form e != e′ and f , the set of update dependencies of that expres-
sion only includes the variables e′ depends on. Such expressions
are created by translating SCR events into their logical equivalents;
they may also be written explicitly. The set of update dependencies
in a table is the union of the sets of update dependencies of the ex-
pressions in the cells in that table. These update dependencies can
be used to determine the set of all variables that can change during
a transition in which a particular monitored variable changes. If a
variable is not in this set, then there is no need to compute the value
of that variable.

The result of applying input slicing is that specialized update
code is constructed for each input such that only variables that
can change value are computed when the program receives that
input. Update code which only computes variables that can change
for a given input when at a given header node is an input slice.
Computing an input slice for every combination of input and header
nodes in the execution-flow graph is input slicing.

To compute an input slice for a given input and header node, we
first compute the set of variables that are update-dependent, directly
or indirectly, on that input. We then recursively copy the table and
switch nodes reachable from that header node. Table and switch
nodes are only copied if the variable they depend on is found in the

Figure 3. The execution-flow graph after applying input slicing to
the graph of Figure 1. Edges leaving header nodes are now labeled
with the inputs that cause them to be traversed. Half the graph is
shown, the rest is similar.

set. If not, they are replaced by a copy of the tree reachable through
the outgoing edge of the table node, or the default outgoing edge
of a switch node. This process of copying with node elimination
continues until a header node is reached. Header nodes are never
copied, but instead new incoming edges to them are created.

Figure 3 shows the results of applying input slicing to the
execution-flow graph created from the thermostat example. When
switch on changes, desired cannot change. Likewise, when
sensed or target change, setting cannot change. Input slic-
ing lets us eliminate one computation along every path between
header nodes. Because it is rare for any input to cause an update
of every dependent variable, input slicing generally reduces the
amount of work needed. It does this by trading space, in the form
of an increased number of update code variants, for speed. For
large specifications, where the number of dependent variables that
can change for any given input tends to be relatively small, input
slicing can lead to substantial speedups. At the same time, we also
encode into the execution-flow graph information about the input
causing a transition, making it available to the next phase of the
optimization process, simplification.

6. Simplification
Simplification uses information about modes and inputs encoded
in the execution-flow graph, as well as other information supplied
as assertions and assumptions, to reduce the complexity of expres-
sions and thus the time needed to evaluate them. It can also elim-
inate entire cells and branches when it determines that there is no
way they can occur, thus reducing the size of the execution-flow
graph and the generated code. The simplification process works
by keeping track of a number of substitutions that are known to
be valid during the current transition. We apply substitutions and
symbolically evaluate the expression until no further evaluation can
be done. For example, if we have the expression a′ = b, and the
substitution b �→ a′, then applying this substitution will turn this
expression into a′ = a′, which is always true.

We choose a set of substitutions such that a simpler expression
is always substituted for a more complex one. For our purposes,
constants (including True, False, and mode class and enumeration
values) are simpler than poststate variables, which are simpler than
prestate variables, which are simpler than other expressions. Sub-
ject to this condition, we define simplicity as an arbitrary total or-
dering of expressions. To ensure that a substitution always produces
an expression that is no more complex than the original, we dis-
allow substitutions from one arbitrary expression to another, only
allowing substitution from an expression to a variable or constant.
Substitutions come from a number of sources. When a substitu-
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tion has been created from a node or edge in the execution-flow
graph, the substitution remains in effect until the next header node
is reached. Substitutions can be derived from each of the following:

• Assumptions and assertions. The SCR toolset allows one to
specify two kinds of properties: environmental assumptions,
which are assumed to be true, and assertions, properties of the
specification which have been proven to be true. The user spec-
ifies both assumptions and assertions. In addition, assertions
may be automatically generated from the specification using the
method described in [15, 17]. During simplification, assump-
tions and assertions are assumed to hold for all inputs and all
state transitions. This allows us to introduce substitutions of the
form e �→ true, where e is an invariant. These substitutions
may then be further simplified to derive other substitutions.

• Modes at header nodes. Since each header node represents a
combination of modes the system is in, during transitions all of
the prestate modes are known. Based on this, substitutions of
the form mc �→ m are derived, where mc is a mode class, and
m is the value of mc in the prestate . This allows us to simplify
the mode comparisons in event and mode transition tables.

• Inputs. If we know, from input slicing, the input that caused
a node to execute, we can derive two kinds of substitutions.
By the One Input Assumption, a change in the value of one
monitored variable implies that the values of all other monitored
variables are unchanged. We also know that any variables not
update-dependent on a given input cannot change. When a
variable v cannot change during a transition, we can add a
substitution of the form v �→ v′.

• Switch nodes. When taking a branch of the switch node, we
can derive two more substitutions, c �→ true, and mc′ =
m �→ true , where c is the condition of the branch, mc′ is the
mode class the switch node computes, and m is the new mode.
This simplifies to mc′ �→ m and thus allows the elimination
of the mode expressions found in condition tables. Along the
default edge, mc �→ mc′ is derived because the mode class
cannot change. As we know the value of mc, we can derive a
substitution for mc′.

• Table nodes. When simplification identifies a cell that must
execute, either because its condition is true or all other cells are
false and the table is complete, we derive two substitutions. The
first is c �→ true, which states that the condition is true. This
is only an interesting substitution if all other cells are false. The
second is v′ = e �→ true, where e is the expression contained
in the cell and v′ the variable computed by the table node.

• Simplification of substitutions. The simplifier can apply other
substitutions and the symbolic evaluator to substitutions. This
is a powerful rule for deriving new substitutions. For example,
it allows us to determine that, if both a ∧ b �→ true holds and
b �→ false holds, then a ∧ false �→ true, which simplifies
to a �→ true.

• Derivation rules. We have formulated several rules for deriving
substitutions from other substitutions. These rules include:

a = b �→ true −→ not(a = b) �→ false

a = b �→ false −→ not(a = b) �→ true

a �→ true −→ not a �→ false

a = b �→ true −→ a �→ b or a = b �→ true −→ b �→ a

Derivation or simplification may lead to a situation in which
there exist two possible substitutions for the same expression.
For example, a �→ b and a �→ c. As a substitution can only

Figure 4. The execution-flow graph after simplifying the graph in
Figure 1.

True
heat = False

Table 4. The A simplified variant table for heat, used when
setting’ = disabled.

not desired desired

heat = False True

Table 5. The B simplified variant table for heat, used when
setting’ = enabled.

exist if two values are equal, we can rewrite the substitutions as
a �→ c, b �→ c, if c is the simpler of b and c.

The simplifier is applied to every condition and expression in
every table and switch node in the graph. When applied to a condi-
tion, the simplifier is applied to each element of the outermost con-
junction, from left to right. After simplifying expressions as much
as possible, the conjunct is assumed true when simplifying later
conjuncts. This eliminates redundancy from conditions. For exam-
ple, a ∧ (a ∨ b) is simplified to just a. In simplifying a table node,
cells containing an expression that evaluates to false are eliminated
from the node entirely. If a cell’s conjunction simplifies to true, that
cell must execute, and hence (by the disjointness property satisfied
by SCR tables) all other cells may not, and are eliminated from the
table. Finding a true predicate also lets us to mark the table as com-
plete, thus allowing us to derive more substitutions. Finding a false
expression for a branch in a switch node allows us to remove that
branch. An expression that evaluates to true allows us to eliminate
all other branches, and the default edge, from that switch node. This
allows us to remove large portions of the execution-flow graph.

Figure 4 shows the results of applying simplification to the
execution-flow graph in Figure 1. (To reduce the size of the figure,
we do not show a simplified input-sliced graph.) The branches of
the switch nodes that cannot execute (because it is impossible to
transition from a mode to the same mode) have been eliminated
from the graph. We created two simplified variants of the table
defining heat. Variant A, in Table 4, is used when setting is
disabled in the poststate, while variant B, in Table 5, is used when
setting is enabled in the poststate. Both of them are simpler than
Table 3, the original table defining heat.
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7. Output Slicing
Up to this point, the value of every variable that depends on a given
input has been computed. However, if, for any series of inputs, the
result of a computation can never influence the value of a controlled
variable, this computation is unnecessary. Because every table in
a well-formed SCR specification must influence the value of at
least one controlled variable, this optimization is only possible after
simplification which allows us to “shut off” portions of the system
in certain modes. The process of eliminating computations that
cannot affect a program’s output is a form of backward slicing [27]
called output slicing.

To perform output slicing, all prestate and poststate variables
that are live at nodes of the execution-flow graph must be identified.
A variable is live in a state if its value can eventually influence the
value of a controlled variable. If a variable is not live in the poststate
at a table node where its value is computed, then that node can be
eliminated without affecting the externally visible behavior of the
system.

To compute the set of live variables in each state at each node
in the execution-flow graph, a backwards data-flow analysis is
applied. We determine the poststate variables that must be live at
each node, and, for each type of node in the graph, we specify a
rule that determines the prestate and poststate variables that must
be live at nodes having control-flow edges to that node. A workset
algorithm is used to repeatedly apply these rules until a fixed point
is reached, thus identifying the variables that are live at all nodes
in the execution-flow graph. There are two cases where variables
must be live in the poststate for slicing to be correct. First, each
controlled variable must be live in the poststate at the table node
that computes it. This is to ensure that output slicing will never
eliminate a computation of a controlled variable, since this could
change the behavior of the system. Likewise, each mode class must
be live in the poststate at the switch node that computes it, thus
ensuring that the execution flow of the system remains unchanged.

Below are three rules for propagating liveness through the
execution-flow graph:

• If a variable is live in the poststate at a node that computes it,
then all variables on which it depends (in the prestate or post-
state) are live at all nodes with edges to that node. This ensures
that calculations used by live calculations are also live. The de-
pendencies used here are those recalculated after simplification
is complete. After simplification, a node often has fewer depen-
dencies than it had before simplification, making output slicing
effective.

• Variables live at a node that does not compute a variable value
are live at nodes with incoming edges to that node. This allows
liveness to propagate through irrelevant nodes.

• If a variable is live in either the prestate or poststate at a header
node, it is live in the poststate at nodes with edges to that
header node. This is because header nodes represent boundaries
between transitions. Variables that were live in the prestate in
one transition are live in the poststate in the previous transition.
Variables live in the poststate at a header node are variables
with values that were not computed during that transition. As a
result, they have the same value as they had in the transition’s
prestate, the poststate of the previous transition. A node with an
edge to a header node will never have variables that are live in
the prestate.

After applying these rules until a fixed-point is reached, every
node is labeled with the variables live in its prestate and poststate. If
a variable is not live in the poststate at a table node that computes its
value, that node computes a value that is never used, and therefore

Figure 5. The execution-flow graph after output slicing Figure 4.

is eliminated. Nodes eliminated in this way always compute the
values of terms, and are often created from condition tables.

Figure 5 shows the result of applying output slicing to the sim-
plified graph of Figure 4. We remove the computations of desired
when setting’ is disabled. This is because desired is only
used by variant B of the table defining heat, and is always recom-
puted without reference to itself on paths where it is used.

Hybrid Slicing. Input slicing may reduce the effectiveness of
output slicing. One case in which output slicing is particularly
effective is when a variable is always recomputed (without using
the prestate value of the variable) when entering modes in which
that variable is used. Unfortunately, input slicing can eliminate such
recomputations. In this case, the variable will need to be maintained
in the old mode to ensure that the value of the variable is available
when needed.

As a solution to this problem, we may perform hybrid slicing,
which suppresses input slicing on paths through the execution-flow
graph where a mode transition takes place. Specifically, when this
hybrid slicing option is enabled, input slicing does not take place on
paths from a branch in a switch node to the next header node. Input
slicing does take place along the default edge leaving a switch node.
By ensuring that all tables are recomputed during mode changes,
hybrid slicing allows input and output slicing to coexist. When
our assumption that inputs causing mode transitions are rare holds,
hybrid slicing is often profitable.

8. Code Generation
After the execution-flow graph has been created and optimized,
it can be used to generate code in a target implementation lan-
guage. Code generation occurs in two steps. First, the execution-
flow graph is used as the basis for creating an abstract syntax tree
(AST) corresponding to the final code. Then the AST is used to
generate target language code. As part of the first step, the system
is converted to an event-driven form.

The generated system exposes an API based on method (or
function) calls. For each monitored variable in the initial speci-
fication, a target-language method is created. When a monitored
variable changes, we expect the corresponding change method to
be called with the new value of the variable. We update the internal
state of the system in response to these calls. We call control meth-
ods supplied by supporting code when the value of a controlled
value changes. We also generate an init method that sets the state
of the system to the initial values defined in the specification.

The AST created contains nodes for variable and method decla-
rations, method invocations, if and switch statements, and variable
assignment. This AST is sufficient to represent the generated pro-
gram.
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For each variable in the specification, the generated program
contains two variables, one representing the variable in the prestate
and the other the value in the poststate. During a transition, values
are calculated for some or all poststate variables. After these up-
dates, the prestate variables are updated to the new values of the
poststate variables.

Another variable, named megamode, stores an integer represent-
ing the set of modes the system is in when it waits for input. This is
equivalent to assigning an integer to each header node. By assign-
ing these integers in a dense manner, we allow a switch statement
on the megamode to be implemented as a table of jump addresses,
efficiently dispatching to the code for the appropriate implemen-
tation of the transform function. This is unnecessary for specifica-
tions having no mode class.

When transforming the execution-flow graph into an event-
driven program, one change method is created for each input. The
outermost construct in the body of this method is a switch on
megamode, the set of modes that the system is in. For each value of
megamode, we find the corresponding header node in the execution-
flow graph, and follow the edge from that node corresponding to the
input. This yields another node. We recursively translate the tree of
nodes rooted at that node into an AST, based on the kind of node
encountered, as described below.

• Each table node is translated to an if-statement, with one
branch per cell in the corresponding table. The condition of
each branch is the expression contained in the cell, and the
block corresponds to the assignment associated with the cell.
For a complete table, the last branch can be converted to an
else branch, as one cell must always run in a complete table.
Otherwise, the else branch is omitted. The whole statement is
followed by the translation of the single next node. If a table
node computes a controlled variable, its translation includes
code to call the appropriate control method when the variable
changes value.

• Each switch node is also translated into an if-statement.
The branches are conditioned by the expressions labeling the
branches in the switch node and contain the appropriate assign-
ment followed by a translation of the node reached through the
outgoing edge corresponding to the branch. If a default out-
going edge exists, the translation of the node reached along
this edge is the else branch. In this way, switch nodes generate
multiple branches of execution.

• When reached, a header node marks the end of a transition,
i.e., the end of a branch of execution. When a header node is
encountered, we generate code to set megamode to the set of
modes found in the next header, and to update prestate variables
corresponding to changed poststate variables.

The AST is created as described above until all change methods
have been created. Finally, the AST is used to generate target-
language code in a straightforward manner.

9. Implementation and Experiments
To demonstrate the feasibility and effectiveness of our method, we
have developed a tool, named OSCR, that automatically generates
optimized code from SCR specifications. This tool also has several
other capabilities in addition to code generation that help us ex-
periment with the generated code and thus evaluate how useful, in
practice, our method is.

9.1 Implementation

OSCR consists of over 5,400 lines of Python code. The bulk of
this code is used to implement the execution-flow graph creation,

optimization, and C/Java code generation phases of our method, as
well as the additional capabilities described below. A small fraction
of the code is used to implement other functionality, not described
here, that stood to benefit from sharing the data structures and
analyses we perform.

One additional capability of the OSCR tool is to generate ran-
dom input for evaluating the performance of the generated code.
Given a specification, OSCR can produce a stream of valid yet
random inputs that can be supplied to the specification. The char-
acteristics of a random input stream may actually lead to results
inferior to those produced from more structured input streams.
Random input often contains large jumps in variable values, and
frequent changes in the value of variables that would in practice
rarely change. In the running thermostat example, the switch on
and target variables rarely change, while the sensed temperature
would change far more often. Random input creates a similar num-
ber of events for all three inputs. This can cause overly-frequent
mode changes, which may cause our experiments to underreport
the benefits of our method.

The tool can also generate framework programs for testing and
profiling the generated code. It takes as input a specification and a
stream of inputs, and generates a framework that supplies that input
to the specification a given number of times. Output can either be
printed for testing purposes, or ignored to allow for profiling. The
input is actually converted into a series of functions calls, as parsing
the input at runtime would entail overhead that would obscure the
running time of the generated code.

The amount of time OSCR takes to generate optimized code
from a specification is largely determined by the size of the specifi-
cation. It requires only a few seconds to process a small specifica-
tion, while our largest specification, containing 1,114 tables, takes
less than sixteen hours. Most of that time is spent in the simplifica-
tion phase. The other phases all complete in seconds, even for our
largest specification.

OSCR also implements a number of potential optimizations that
were considered and rejected. One such optimization uses flags to
indicate which variables actually need updates. Despite its use in
other programs (such as the simulator described in [12]), we found
this optimization to be largely ineffective due to the high cost of
updating and checking the flags.

9.2 Experiments

To evaluate the effectiveness of our methods, we have used OSCR
to automatically generate code for a number of specifications, rang-
ing from small synthetic examples (such as the running thermo-
stat example) to large flight control systems developed by industry.
Table 6 describes the specifications with which we have experi-
mented. The two variants of the safety injection system are present
to show how the optimization process can take pre-existing invari-
ants into account.

Table 7 shows the running times of C code generated from SCR
specifications using various combinations of the optimizations de-
scribed above. It also compares the running times to a baseline vari-
ant created without use of an execution-flow graph, generated using
a reimplementation of the method in [21]. Empty cells represent
optimizations that could not be applied, due to the lack of mode
classes in the wcp and acs specifications. In all cases, a maximal
combination of the effective optimizations, either with or without
hybrid slicing, produced the best results. This is to be expected,
as the random input data produces frequent mode changes, which
hurts the performance of the hybrid-sliced variant more than the
other variants. While input slicing produced the largest speedups,
output slicing and simplification also produced substantial perfor-
mance improvements.
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name MVs DVs modes description
ts 3 3 2 The thermostat running example.
sis 3 3 3 The safety injection system is found in [13].

sisinv 3 3 3 The same safety injection system, with automatically-generated invariants.
cc 10 12 4 A cruise control system example.

scram 26 4 3 Shutdown control logic for a nuclear power plant.
wvp 74 159 1 Weapons control panel.
acs 230 1114 1 Aircraft control software.

Table 6. Descriptions of benchmark specifications. MVs is number of monitored variables, DVs the number of dependent variables.

variant ts sis sisinv cc scram wcp acs
baseline 3.87 (1.00) 5.21 (1.00) 4.96 (1.00) 15.52 (1.00) 11.42 (1.00) 5.64 (1.00) 44.81 (1.00)
simplify 3.87 (1.00) 3.71 (1.40) 3.63 (1.37) 10.05 (1.54) 4.90 (2.33) 5.42 (1.04) 43.49 (1.03)

simplify/os 3.87 (1.00) 3.56 (1.46) 3.60 (1.38) 9.11 (1.70) 4.60 (2.48) 5.37 (1.05) 40.05 (1.12)
is/simplify 3.22 (1.20) 2.78 (1.87) 2.45 (2.02) 5.66 (2.74) 1.73 (6.60) 1.65 (3.42) 0.69 (64.94)

is/simplify/os 3.22 (1.20) 2.82 (1.85) 2.44 (2.03) 5.45 (2.85) 1.73 (6.60) 1.60 (3.52) 0.62 (72.27)
simplify/hybrid 2.93 (1.32) 2.73 (1.91) 2.56 (1.94) 5.53 (2.81) 1.78 (6.42)

Table 7. Running times of optimization variants, as cpu time in seconds. Numbers in parenthesis are relative speedups. Empty cells represent
inapplicable optimizations. “is” stands for input slicing, and “os” for output slicing.

variant ts sis sisinv cc scram wcp acs
baseline 2.6 (1.00) 1.5 (1.00) 1.5 (1.00) 3.9 (1.00) 4.4 (1.00) 29.1 (1.00) 311.5 (1.00)
simplify 1.4 (0.54) 2.0 (1.27) 1.8 (1.23) 9.9 (2.52) 6.4 (1.47) 28.6 (0.98) 307.4 (0.99)

simplify/os 1.4 (0.54) 1.9 (1.24) 1.8 (1.22) 8.1 (2.06) 6.2 (1.42) 28.4 (0.97) 278.5 (0.89)
is/simplify 3.1 (1.21) 3.8 (2.46) 3.7 (2.50) 19.8 (5.02) 13.8 (3.16) 158.0 (5.42) 1004.7 (3.23)

is/simplify/os 3.1 (1.21) 3.8 (2.47) 3.7 (2.49) 17.6 (4.47) 13.8 (3.16) 157.8 (5.41) 926.6 (2.97)
simplify/hybrid 2.9 (1.12) 3.5 (2.31) 3.5 (2.37) 15.6 (3.94) 12.1 (2.77)

Table 8. Object sizes, in kilobytes, with relative sizes in parentheses. Empty cells represent inapplicable optimizations.

In no case did optimization decrease performance, and, in many
cases, it more than doubled performance. In general, the amount
of speedup increases with the complexity of the specification. We
believe that this is because the larger a specification is, the more
likely it is that computations will exist that do not need to be
executed for any given input and set of modes. This is borne
out by the largest performance increase (over 72 times) gained in
applying our optimizations to the largest specification (acs, with
1,114 tables).

Table 8 shows the object code size for each variant. The reported
sizes are determined by taking the size of the stripped object file
compiled from the generated code. The reported sizes include the
size of the initialization code, which runs only once, and therefore
need not be considered when understanding long-term cache be-
havior. An ineffective optimization (always backward slicing) leads
to a variant with the same size as another variant.

Interestingly, we never encounter a specification that has a
worst-case size increase. The worst case size increase for rep-
resenting the modes in the execution-flow graph is equal to the
square of the number of combinations of modes in the system. We
never encounter this, with the largest size increase due to simpli-
fication equal to a factor of 2.52 for the cc specification, which
has 4 modes. Likewise, input slicing could potentially expand the
specification by a factor of the number of monitored variables in
the specification. Instead, the largest increase is by a factor of 5.42,
on a specification with 74 variables. The simplification allowed by
representing inputs and modes in the execution-flow graph makes
up for much of the potential cost in object size.

The specifications sis and sisinv differ only in the presence
or absence of additional invariants, generated using the method
described in [15, 17]. Table 7 shows that when input slicing is used,
the presence of these invariants leads to a noticeable performance
improvement.

10. Related Work, Future Work, and Conclusion
In this paper, we have described execution-flow graphs, a rep-
resentation of state-machine based specifications that supports
code generation and optimization. We have also described three
optimizations—input slicing, simplification, and output slicing—
that exploit properties of these specifications. A tool, OSCR, was
introduced that can automatically apply these techniques. Our ex-
perimental results demonstrate the effectiveness of our techniques
as applied to SCR specifications. Adding the tool OSCR to the
SCR toolset will allow SCR users to use our method to generate
optimized code from SCR specifications.

This work was motivated by research which used the APTS pro-
gram transformation system to perform unoptimized code genera-
tion from SCR specifications [21]. OSCR improves on this work in
three ways: It is fully automatic, not requiring a manual translation
step; it is much faster, taking seconds to generate unoptimized code
from a specification with 1,114 tables (rather than 12 hours to gen-
erate code for a specification with 20 tables); and it can generate
optimized code.

The work most similar to ours is the code generation work per-
formed for LUSTRE [9]. The LUSTRE code generation method in-
volves building a state machine representing the boolean variables
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in the specification, and then producing simplified implementations
of the transform functions for each state. It was abandoned by the
Esterel toolchain (used by the LUSTRE compiler) due to a state ex-
plosion problem (mentioned in [6]). Our synthesis method exploits
SCR mode classes, which are few in number and important, allow-
ing us to avoid state explosion. While some work has been done
on slicing LUSTRE [8] and Esterel [19], this work is for program
understanding rather than optimization.

Code generation has been developed for other specification lan-
guages, such as RSML [28], Input/Output Automata [26], and
Charon [1]. Reference [28] mentions that the code generator for
RSML performs input slicing, but does not go into detail. The code
generators for the other two languages do not seem to perform any
of the optimizations described in this paper.

By themselves, none of the optimizations that OSCR performs
are novel. Generating specialized update code for particular tran-
sitions is a form of incrementalization [24]. Program slicing is a
well-known technique [27], and backward slicing has been applied
by others to program optimization [25]. Input slicing for optimiza-
tion is mentioned in a paragraph in [28] but its value is diminished
by the requirement for discrete input types. Simplification based
on known variable values is described in [9]; our technique for
simplification is a form of constraint-based partial evaluation [20].
This paper shows that these techniques complement each other in a
manner suitable for generation of optimized code from SCR spec-
ifications. The One Input Assumption makes input slicing possible
by reducing the possible inputs to a manageable size, while the
limited number of mode classes in high-quality SCR specifications
improves the success of backward slicing and simplification.

Our current method improves the performance of a program
while maintaining the One Input Assumption—i.e., allowing only
one monitored event to change from one state to the next. One pos-
sible avenue of future work is to study optimizations that discard
this assumption, allowing us to process several inputs in a single
transition. A second avenue of future work is formal proof of the
correctness of the methods described herein.
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