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ABSTRACT
Regular path queries are a way of declaratively expressing
queries on graphs as regular-expression-like patterns that are
matched against paths in the graph. There are two kinds of
queries: existential queries, which specify properties about
individual paths, and universal queries, which specify prop-
erties about all paths. They provide a simple and conve-
nient framework for expressing program analyses as queries
on graph representations of programs, for expressing veri-
fication (model-checking) problems as queries on transition
systems, for querying semi-structured data, etc. Paramet-
ric regular path queries extend the patterns with variables,
called parameters, which significantly increase the expres-
siveness by allowing additional information along single or
multiple paths to be captured and related.

This paper shows how a variety of program analysis and
model-checking problems can be expressed easily and suc-
cinctly using parametric regular path queries. The paper de-
scribes the specification, design, analysis, and implementa-
tion of algorithms and data structures for efficiently solving
existential and universal parametric regular path queries.
Major contributions include the first complete algorithms
and data structures for directly and efficiently solving ex-
istential and universal parametric regular path queries, de-
tailed complexity analysis of the algorithms, detailed ana-
lytical and experimental performance comparison of varia-
tions of the algorithms and data structures, and investiga-
tion of efficiency tradeoffs between different formulations of
queries.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program verifica-
tion—model checking ; D.3.2 [Programming Languages]:
Language classifications—very high-level languages; D.3.3
[Programming Languages]: Language constructs and fea-
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tures—patterns; D.3.4 [Programming Languages]: Pro-
cessors—code generation, optimization; E.1 [Data]: Data
structures—arrays, lists; E.2 [Data]: Data storage represen-
tations—hash-table representations, linked representations;
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical algorithms and problems—computations
on discrete structures; F.3.2 [Logics and Meanings of
Programs]: Semantics of programming languages—Pro-
gram analysis; F.4.3 [Mathematical Logic and Formal
Languages]: Formal languages—Classes defined by gram-
mars or automata; H.2.3 [Information Systems]: Data-
base management—query languages ; H.2.4 [Information
Systems]: Systems—query processing

General Terms
Algorithms, Design, Languages, Performance

Keywords
Algorithms, data structures, graph query languages, pro-
gram analysis, memoization, model checking, optimization,
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1. INTRODUCTION
Many important analysis problems can be expressed as

graph queries. This includes program analyses that are es-
sential for improving program performance, safety, security,
etc., model-checking problems for verification of sequential
and concurrent systems, mining of semi-structured data, and
so on. General frameworks for graph queries, together with
tools based on them, allow users to easily specify and effi-
ciently perform a wide variety of analysis tasks, saving enor-
mous effort compared to implementing each analysis sepa-
rately.

Parametric regular path queries. Regular path queries
are a way of declaratively expressing queries on graphs as
regular-expression-like patterns that are matched against
paths in the graph. They provide a simple and convenient
framework for expressing program analyses as queries on
graph representations of programs [6] and for expressing
model-checking problems as queries on transition systems.
Regular path queries are also important in analyzing semi-
structured data in database systems [1], particularly data in
XML [19], which is increasingly used for representing data,
including programs as data.
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Regular expression patterns can capture simple but com-
mon and important properties easily, even though they are
not as powerful as languages in more sophisticated frame-
works. The combined power and simplicity of regular ex-
pressions contribute to their wide use in computing, from
languages and compilers, to database and web information
retrieval, to operating systems and security, etc.

Parametric regular path queries extend the patterns with
variables, called parameters, which significantly increase the
expressiveness by allowing additional information along sin-
gle or multiple paths to be captured and related, and the
amount of such information is not bounded by the size of
the pattern. This extension enables analysis of significantly
many more important properties about dependencies, con-
currency, resource usage, etc. The regular expression pat-
terns used to analyze these properties are simple, easy to
write, and succinct.

General algorithms have been studied for solving simpler
regular path queries, in particular, queries involving uncor-
related paths [21] and queries containing no variables [12,
6]. A method was also proposed to code parametric regular
path queries using logic programs [7]. What have been lack-
ing are complete algorithms and data structures for solving
parametric regular path queries directly, efficiently, and with
precise complexity analysis.

This paper. This paper studies existential and universal
parametric regular path queries and their use in program
analysis and model checking. Existential queries specify
properties about individual paths. Universal queries spec-
ify properties about all paths and are much harder to solve.
We describe the precise specification, design, analysis, and
implementation of complete algorithms and data structures
for efficiently solving both kinds of queries.

Major contributions of this paper include the first com-
plete algorithms and data structures for directly and effi-
ciently solving existential and universal parametric regular
path queries, detailed complexity analysis of the algorithms,
detailed analytical and experimental performance compari-
son of variations of the algorithms and data structures, and
investigation of efficiency tradeoffs between different formu-
lations of queries.

The rest of the paper is organized as follows. Section 2 de-
fines parametric regular path queries and shows how a vari-
ety of practical program analysis and model checking prob-
lems can be expressed easily and succinctly as such queries.
Sections 3 and 4 describe algorithms, data structures, and
time and space complexities for solving existential and uni-
versal queries, respectively. Section 5 discusses tradeoffs and
extensions, as well as improvements in the complexity anal-
ysis and performance and in the query language and usage.
Section 6 describes our implementation and experiments.
Section 7 compares with related work and concludes.

2. PARAMETRIC REGULAR PATH QUERIES
When analyzing a program graph or checking a transition

graph, two kinds of questions are often asked: “Will some-
thing happen along some path of the graph?” and “Will
something happen along all paths of the graph?” We refer
to these as existential and universal queries, respectively. In
parametric regular path queries, “something” is expressed
as an extended regular expression that contains parame-

ters, hereafter called a pattern. To answer these queries,
one needs to examine paths of the graph and check, for an
existential query, whether some path matches the pattern
and, for a universal query, whether all paths match the pat-
tern.

We define the problem and then give examples in pro-
gram analysis and model checking. These examples show
that parametric regular path queries are powerful enough
to express a wide variety of useful analysis problems, and
that the queries are succinct and easy to write. In contrast,
implementing these analyses separately without a frame-
work would require a significant effort. Thus, a tool for effi-
cient evaluation of such queries can greatly reduce the effort
needed to implement new analyses. Tools based on more
expressive analysis frameworks, such as set constraints or
temporal logic, could be used for these analyses, but those
frameworks and tools are typically also more complicated
and hence accessible only to more sophisticated users.

2.1 Definition of the problem
Graphs. We consider edge-labeled directed graphs. For ex-
ample, in program graphs, vertices correspond to program
points, and labeled edges correspond to operations. These
graphs are similar to control-flow graphs, but the roles of
vertices and edges are reversed.

We generally use edge labels that reflect only information
relevant to the analysis of interest. For example, consider
an assignment statement a:=5 in a program. If we are inter-
ested in analyzing reaching definitions, then this statement
may be represented by the label def(a), indicating a def-
inition of (i.e., assignment to) a. If we are interested in
constant folding, then this statement might be represented
by the label def(a,5).

We refer to names, such as def, that represent abstract
aspects of edge labels, as constructors, and we display them
in boldface. We refer to names, such as variable name a or
literal 5, that represent concrete aspects of edge labels, as
symbols, and we display them in typewriter font. An edge la-
bel is a constructor applied to zero or more arguments, where
an argument may be a symbol or, recursively, a constructor
application.

Parametric regular-expression patterns. We consider
patterns that are regular expressions whose alphabet con-
tains parameterized elements. We display parameters in
math italic font. For example, def(x)∗use(x) represents
a consecutive sequence of definitions of a same variable, de-
noted by x, ended by a use of the same variable. We also
allow wildcards and negations, denoted by and ¬, respec-
tively. For example, ∗def(a) represents a sequence of zero
or more arbitrary labels followed by a definition of a, def( )

represents a definition of any variable, ¬def(a) represents
anything that is not a definition of a, and def(¬a) repre-
sents a definition of any variable but a.

Precisely, the alphabet of the patterns contains elements,
called transition labels, that may be a constructor applied to
zero or more arguments, its negation, or a wildcard, where
an argument may be: (1) a symbol in the edge labels, or
its negation; (2) a parameter that can be instantiated to
symbols in the edge labels, or its negation; or (3) recursively,
a transition label. Note that we only consider matching
of parameters with symbols; a generalization to consider
matching with constructor applications is possible.
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Substitutions and matching. To match patterns against
graph paths, we need the notion of substitution. A substitu-
tion is a map from parameters in the pattern to symbols in
the graph. For example, substitution {x �→ a, y �→ b} maps
x to a and maps y to b. A substitution θ applied to a pat-
tern p, denoted θ(p), replaces the parameters in p according
to the mappings in θ.

We say that an edge label el matches a transition label tl
under a substitution θ if θ(tl) contains no parameters and el
matches θ(tl), where an edge label el matches a transition
label tl that contains no parameters if one of the following
conditions holds: (1) el = tl; (2) tl = ; (3) tl = ¬tl1 and,
recursively, el does not match tl1; (4) el = f(el1, ..., eln),
tl = f(tl1, ..., tln), and recursively eli matches tli for i =
1..n, where f is a constructor. We say that a path g in a
graph Gmatches a sentence p accepted by a pattern P under
a substitution θ if the sequence of edge labels on g matches
the sequence of transition labels on p under θ label by label.

(b)

(a)

(a)

(a)

(b)

use

use

a:=2;

if(f(a))

b:=1;

else

a:=1;

g(b);

def

defdef

v0

Figure 1:Anexampleprogramand its programgraph.

Figure 1 gives an example program graph for analyses
about variable definitions and uses. Given a pattern
(¬def(x))∗use(x), the path def(a)use(a)def(a)use(b)
in the graph matches the sentence (¬def(x))3use(x) ac-
cepted by the pattern under the substitution {x �→ b}.

Parametric regular path queries. We define two kinds of
queries:

Existential queries: Given an edge-labeled directed graph
G where labels may have arguments, a vertex v0 in G,
and a parametric regular-expression pattern P , com-
pute all pairs of vertex v in G and a substitution θ for
parameters in P such that there exists a path from v0
to v in G that matches some sentence accepted by P
under θ.

Universal queries: Given an edge-labeled directed graph
G where labels may have arguments, a vertex v0 in G,
and a parametric regular-expression pattern P , com-
pute all pairs of vertex v in G and substitution θ for
parameters in P such that there is a path from v0 to v
in G and every path from v0 to v in G matches some
sentence accepted by P under θ.

2.2 Program analysis examples
We describe how a range of common and important prop-

erties can be expressed easily and succinctly using para-
metric regular path queries. Some data-flow analysis prob-
lems are backward and are expressed using backward queries,
meaning that all edges in the graph are reversed before the
query is evaluated. We assume the program has a unique
entry point and a unique exit point, as the default start-
ing vertex for forward queries and backward queries, respec-
tively.

Uninitialized variables. Checking for uses of unini-
tialized variables is a classic data-flow analysis. Consider a
program graph with labels of the forms def(a) and use(a),
representing definitions and uses, respectively, of some vari-
able a. To find vertices that immediately follow a use of
an uninitialized variable, we can use an existential query
with pattern (¬def(x))∗use(x). To find only the first use
of each uninitialized variable along each path, we can use
(¬(def(x)|use(x)))∗use(x). The substitution for x asso-
ciated with a vertex in the result set identifies the offending
program variable.

Live variables. Finding live variables at each program
point is another classic data-flow analysis. A variable is
live at a program point if it is used before being defined on
some path from that point. We can use a backward exis-
tential query with pattern ∗use(x)(¬def(x))∗. It returns
all pairs 〈v, θ〉 such that at program point v, variable θ(x) is
live. Other classic analyses, such as reaching definitions and
dead-code analysis, can also be formulated easily as para-
metric regular path queries.

Available expressions. An expression a o b for some
variables a and b and operation o is available at a program
point v if, on every path from the program entry point to
v, there is a computation of a o b, represented using label
exp(a,o,b), that is followed by no definitions of a or b

on that path. We can use a universal query with pattern
∗exp(x,op,y)(¬(def(x)|def(y)))∗. This query returns

all pairs 〈v, θ〉 such that at program point v, expression
θ(x) θ(op) θ(y) is available.

Constant folding. A variable a at a program point v
has a constant value k if, on every path from the program
entry point to v, there is a definition of a to the constant k,
represented using label def(a,k) instead of def(a), followed
by no definitions of a. Any use of a on outgoing edges of
v can be replaced by k. We can use a universal query with
pattern ∗def(x,c)(¬(def(x)|def(x, )))∗. It returns all
pairs 〈v, θ〉 such that at program point v, variable θ(x) has
constant value θ(c) following any possible path from the
entry point.

Files. Operations in typical file I/O libraries, represented
using labels of the forms open(f), close(f), and access(f)
for file f, must be used following certain sequencing con-
straints. In particular, a file must be open at the time
it is accessed, and open files must be subsequently closed.
To detect respective violations, we can use an existential
query with pattern (ε| ∗close(f))(¬open(f))∗access(f),
where ε matches the empty string, and a backward exis-
tential query with pattern (¬close(f))∗open(f). Other
properties, such as that a file must be open at the time
close is called on it and that a file is possibly used after it is
opened, can also be easily expressed in our framework.

Freed memory. It is an error to free or dereference mem-
ory that has already been freed. Consider program graphs
with labels of the forms malloc(p), free(p) and deref(p),
for allocating, freeing, and dereferencing pointer p, respec-
tively. To find these errors, we can use the existential query
with pattern ∗free(p)(¬malloc(p))∗(free(p)|deref(p)).
It returns all pairs 〈v, θ〉 such that at program point v,
pointer θ(p) has just been freed or dereferenced and, ear-
lier along some path to v, it was freed without subsequently
being assigned fresh memory.

Interrupts. To manipulate the interrupt level properly,
operating system code typically follows a strict discipline.
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In particular, a procedure should save the original interrupt
level in a variable, say flag, (represented as save(flag))
before changing it (represented as change()) and should
restore the interrupt level from flag (represented as re-
store(flag)) before terminating. Such constraints are sim-
ilar to those for file I/O and can easily be expressed in our
framework. For example, assuming there is an edge labeled
exit() at the end of each procedure, the existential query
with pattern ∗save(x)change()(¬restore(x))∗exit() re-
ports violations of the rule that a procedure that saved and
changed the interrupt level must subsequently restore it.

Security. In UNIX, to ensure proper access control, a
program executed with superuser privilege should close all
open files before changing its effective user id to that of
a non-superuser (by calling seteuid with a non-zero argu-
ment, represented as seteuid(¬0)). To detect violations
of this rule, we can use an existential query with pattern
∗open(f)(¬close(f))∗seteuid(¬0). This returns all pairs
〈v, θ〉 such that at v, file θ(f) is still open on some path and
seteuid has just been called with a non-zero argument.

Locking discipline. Many concurrent programs follow a
synchronization discipline in which shared variables are pro-
tected by non-reentrant locks. A variable a is protected by a
lock l if a is accessed (represented as access(a)) only when
l is held, i.e., a is not accessed outside a duration where l

is acquired (represented as acq(l)) and not subsequently
released (represented as rel(l)). We can use a universal
query with pattern ((¬access(x))∗acq(l)(¬rel(l))∗)∗. It
returns all pairs 〈v, θ〉 such that variable θ(x) is protected
by lock θ(l) on all paths to v. Each substitution associated
with the program exit point gives a variable that is globally
protected by a lock. Correct use of locks is also subject to
sequencing constraints, for example, only a held lock can
be released; these constraints can easily be expressed in our
framework.

Deadlock avoidance. A classic strategy for deadlock
avoidance is to introduce a partial order ≺ on locks, and ac-
quire locks in that order, i.e., a process or thread that holds a
lock l1 can only acquire a lock l2 if l1 ≺ l2. Assuming locks
are non-reentrant, to find pairs of locks such that one is held
while the other is acquired on some path, we can use an exis-
tential query with pattern ∗acq(l1)(¬rel(l1))

∗acq(l2) ∗.
It returns all pairs 〈v, θ〉 such that, on some path to v, θ(l2)
is acquired while θ(l1) is held. Examination of all substitu-
tions associated with the program exit point easily reveals
whether locks are acquired consistent with some partial or-
der ≺.

Some of these properties, such as file I/O and freed mem-
ory, are affected by equalities between program variables,
such as aliasing of file pointers. Our current implementation
takes into account equalities caused by passing parameters
and return values. We plan to extend it to track additional
equalities, as discussed in Section 5.

2.3 Model checking examples
Many model-checking problems can be expressed as para-

metric regular path queries. We consider a few representa-
tive model-checking problems for labeled transition systems
(LTSs). An LTS is a finite graph, together with a distin-
guished starting vertex v0, in which each edge is labeled
with act(a) for some action a, and each vertex corresponds
to a unique state. We transform LTSs to make the vertices
(i.e., states) explicit in the edge labels. The transformation

to produce graphs suitable for existential queries augments
each vertex v with an edge from v to v labeled state(v).
The transformation to produce a graph suitable for univer-
sal queries replaces each vertex v with two vertices vin and
vout connected by an edge with label state(v), and incom-
ing and outgoing edges of v are re-directed to vin and vout ,
respectively. In the rest of this subsection, we consider the
resulting graphs.

Deadlock. An LTS has a deadlock if it contains a vertex
(i.e., a state) that is reachable from v0 and has no outgoing
edges. To find vertices that have outgoing edges, we use an
existential query with pattern ∗state(s)act( ). It returns
all pairs 〈v, θ〉 such that state θ(s), i.e., vertex θ(s), is reach-
able from v0 and is followed by some action just before v. If
every reachable vertex appears in some substitution in the
result, then every reachable vertex has an outgoing edge,
and the LTS contains no deadlock.

Livelock. An LTS has a livelock if it has a reachable cycle
that contains only the invisible action i. To find paths that
end with such cycles, we can use an existential query with
pattern ∗state(s)act(i)+state(s). It returns all pairs
〈v, θ〉, where v is also θ(s), such that vertex v is reachable
from v0 and is on a cycle of invisible actions. The LTS
contains a livelock iff the result of the query is non-empty.

2.4 Notation
We consider a graph to be a set G of labeled edges of

the form 〈v1, el, v2〉, with source and target vertices v1 and
v2 respectively and edge label el. A specific vertex v0 in
G is given as the starting vertex. We will convert patterns
to finite automata. An automaton is a set P of labeled
transitions of the form 〈s1, tl, s2〉, with source and target
states s1 and s2 respectively and transition label tl; a start
state s0; and a set F of final states.

Given an edge label el and a transition label tl, let
match(tl, el), which takes a set of symbols as an implicit
argument, be the set of minimal substitutions θ such that
el matches tl under θ. The resulting set has at most one
element when tl contains no negations but can be very large
otherwise. For example, match(use(a),¬use(x)) is the set
of substitutions of the form {x �→ b}, where b is any symbol
other than a. Given a set S of substitutions, merge(S) is
(1) badsubst if any two substitutions in S disagree on the
mapping of any variable in the intersection of their domains
and (2) the union of the substitutions in S otherwise. We
sometimes write merge({θ1, θ2}) as merge(θ1, θ2).

Our complexity analysis uses the notation in Figure 2.

3. SOLVING EXISTENTIAL QUERIES
For existential queries, we convert a parametric regular-

expression pattern straightforwardly to an NFA (nondeter-
ministic finite automaton) of the same size. The existential
query problem is: given G, v0, P , s0, and F , compute all
pairs 〈v, θ〉 such that there is some path from v0 to vertex v
that matches some path from s0 to some state in F under
substitution θ. Explicit computation of matching informa-
tion for individual graph paths would be too expensive, so
we instead compute matching information for reachable ver-
tices.

Let reach(G,P, v0, s0), called the reach set, be the set
of triples 〈v, s, θ〉 such that some path from v0 to v in G
matches some path from s0 to s in P under substitution θ.
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Name Meaning

verts number of vertices in G
states number of states in P
symbs number of symbols in G that parameters in

P can be instantiated to
pars number of parameters in P
substs 1 (for badsubst) plus the number of substitu-

tions that match some path from v0 inG with
some path from s0 in P ; this is O(symbspars)

labelsize maximum size of a single edge label in G or
transition label in P

edgelabels number of distinct edge labels in G
translabels number of distinct transition labels in P
labelpars maximum number of parameters in a transi-

tion label of P

Figure 2: Notation for complexity analysis.

Then the existential query is to compute

{〈v, θ〉 | ∃s∈F : 〈v, θ, s〉 ∈ reach(G,P, v0, s0)} (1)

Basic algorithm. It is easy to see that the following rules
hold for computing reach(G,P, v0, s0):

(i) if 〈v0, el, v〉∈ G and 〈s0, tl, s〉∈ P and θ ∈ match(tl, el),
then 〈v, s, θ〉 ∈ reach(G,P, v0, s0).

(ii) if 〈v, s, θ〉∈ reach(G,P, v0, s0) and 〈v, el, v1〉∈ G and
〈s, tl, s1〉∈ P and θ1∈ match(tl, el) and
θ2 = merge(θ, θ1) �=badsubst ,
then 〈v1, s1, θ2〉 ∈ reach(G,P, v0, s0).

We can compute reach(G,P, v0, s0) by repeatedly adding
triples according to the two rules, and compute the query
result according to (1). This leads to the following basic
algorithm, where R is the set of triples already considered
for the reach set, W is the worklist of triples yet to consider,
and E is the result of the existential query:

R := {}; //initialize reach set
W := {}; //initialize worklist
for 〈v0, el, v〉 in G // based on rule (i)

for 〈s0, tl, s〉 in P
for θ in match(tl, el)
W :=W ∪ {〈v, s, θ〉};

E := {}; //initialize query result
while exists 〈v, s, θ〉 in W//take from worklist
R := R ∪ {〈v, s, θ〉}; //add to reach set
W :=W − {〈v, s, θ〉}; //update worklist
for 〈v, el, v1〉 in G // based on rule (ii)

for 〈s, tl, s1〉 in P
for θ1 in match(tl, el)

if θ2 = merge(θ, θ1) �= badsubst
if 〈v1, s1, θ2〉 �∈ R
W :=W ∪ {〈v1, s1, θ2〉};

if s ∈ F //update query result
E := E ∪ {〈v, θ〉};

(2)

When transition labels contain no negations or wildcards,
there is at most one element in the result of match, and
match and merge can be computed easily by scanning the

argument labels and substitutions, respectively; how to han-
dle negations and wildcards are described below.

We use adjacency list representations forG and P . We can
use nested arrays, hash tables, or combinations of them for
R and W , as well as for E. We use natural numbers, called
keys, to represent vertices, states, symbols, parameters, and
substitutions. Substitutions are represented as arrays that
map parameters to symbols. We maintain an array of substi-
tutions, indexed by the key for substitutions. Substitutions
are created dynamically, so we use the standard technique
of doubling the size of the array when the array is full; this
does not increase the worse-case asymptotic time and space
complexities. When a substitution is constructed, we add it
to this array if it is not already present; to efficiently check
whether it is present, we can maintain a nested array struc-
ture representing all previously constructed substitutions, or
we can use a hash table.

This algorithm has worst-case running time O(|G|× |P |×
substs × (labelsize + pars)), since it considers each triple
〈v, s, θ〉 in W and R, iterates over all outgoing edges of v
and outgoing transitions of s, and computes a match and
possibly a merge taking time O(labelsize) and O(pars), re-
spectively, in each iteration. The factor substs instead of
symbspars is used because only substitutions that are the
third component of a triple in W and R, i.e., that match
some path from v0 in G with some path from s0 in P , are
considered. The algorithm takes O(|G|+|P |+verts×states×
symbspars + pars × symbspars) space, when nested arrays are
used for R andW , and O(|G|+ |P |+verts×states×substs+
pars×symbspars) space if hashing is used for at least the last
component of R and W ; the four summands are for P , G,
R and W , and substs, respectively.

Memoization and precomputation. It is easy to see that
for a pair of el and tl that come out of vertex v and state s,
respectively, match(tl, el) may be computed multiple times.
We may save and reuse the results of match in an auxiliary
map, Ms, called substitution map, that maps a pair 〈el, tl〉
to the resulting substitution. We initialize Ms to {} imme-
diately after R is initialized to {}, and replace each call to
match with a lookup inMs, returning the result if found and
otherwise computing match, adding the result to Ms, and
returning it. To support efficient operations on Ms, we map
edge labels and transition labels, respectively, into natural-
number keys. We represent the map as an array indexed by
the keys for edge labels, where each array element is an ar-
ray indexed by the keys for the transition labels and whose
elements are keys of substitutions.

This memoization reduces the total cost of computing all
match’s to O(|G| × |P | × labelsize), and reduces the time
complexity of the algorithm to O(|G| × |P | × labelsize +
|G| × |P | × substs × pars). The space usage is increased by
O(edgelabels × translabels) for the substitution map.

One may further notice that for each pair of vertex v and
state s, the same set of substitutions that match outgoing
edges of v and outgoing transitions of s is computed re-
peatedly for different substitutions θ such that 〈v, s, θ〉 is
taken from W . Indeed, we may precompute an auxiliary
map, Mts, called target-and-substitution map, that maps a
pair 〈v, s〉 to the set of triples 〈v1, s1, θ1〉 such that there is
〈v, el, v1〉 in G and 〈s, tl, s1〉 in P and match(tl, el) = θ1.
This yields the following pseudo-code, in place of initializa-
tion of worklist in (2), that computesMts as well, where Rts
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and Wts are needed for computing Mts,

W := {};
Rts := {};
Wts := {};
Mts := {};
for 〈v0, el, v〉 in G

for 〈s0, tl, s〉 in P
for θ in match(tl, el)
W :=W ∪ {〈v, s, θ〉};
Wts :=Wts ∪ {〈v, s〉};
Mts :=Mts ∪ {〈v0, s0, v, s, θ〉};

while exists 〈v, s〉 in Wts

Rts := Rts ∪ {〈v, s〉};
Wts :=Wts − {〈v, s〉};
for 〈v, el, v1〉 in G

for 〈s, tl, s1〉 in P
for θ in match(tl, el)

if 〈v1, s1〉 �∈ Rts

Wts :=Wts ∪ {〈v1, s1〉};
Mts :=Mts ∪ {〈v, s, v1, s1, θ〉};

//initialize W as in
// (2), except that
// Rts, Wts, and Mts

// are initialized
// together with W

//compute Mts, with
// help of Rts and Wts,
// as for computing W
// but w/o 3rd compo
// -nent or call to merge

(3)

and the following simplified update, in place of update of
worklist in (2), that uses the precomputed map Mts:

W :=W − {〈v, s, θ〉};
for 〈v, s, v1, s1, θ1〉 in Mts

if θ2 = merge(θ, θ1) �= badsubst
if 〈v1, s1, θ2〉 �∈ R
W :=W ∪ {〈v1, s1, θ2〉};

//update W , as
// in (2), except
// that only Mts

// is needed
(4)

This precomputation avoids enumerating all outgoing
edges of v and outgoing transitions of s repeatedly, but enu-
merates only target vertices and states led to by successful
substitutions in Mts. This may improve the running time
over memoizing only results of match, though not asymp-
totically, to O(|G| × |P | × labelsize + |Mts| × substs × pars),
where Mts is O(|G| × |P |) but could be much smaller. The
additional space used is O(|G| × |P |).

Negations and wildcards. Wildcards in transition labels
are easy to handle: we only need to extend match to make
any edge label match a wildcard under the empty substi-
tution. Negations, if surrounding only parameters that are
already bound earlier in the pattern and thus earlier on the
paths, can also be handled easily in the main loop of the ba-
sic algorithm (2): we simply modify match(tl, el) to check
whether el matches tl under θ by definition, and to return
{{}} if so and {} otherwise. This is actually a degenerate
case of our general method for handling negations, described
below.

One might think of treating negations as alternations when
converting a pattern to an automata, and then using the
above algorithms; for example, replace ¬def(a) with an al-
ternation containing all other edge labels in G. However,
this method is typically very inefficient, and it is not appli-
cable when there is a parameter to a negated constructor,
as in ¬def(x).

Another inefficient approach is to naively compute match
and consider all resulting substitutions. This increases the
time to compute match from O(labelsize) to O(symbs labelpars

× labelsize) and results in O(symbs labelpars) substitutions.
This significantly increases the overall complexity.

Our method is to modify match together with merge so
that, overall, we consider only substitutions that actually

match some path in G with some path in P , not enumerat-
ing other substitutions. Observe that, in the basic algorithm
(2), the result of match(tl, el) is used as an argument to
merge. So instead of computing and considering all substi-
tutions from the result of match(tl, el) and then computing
merge for each, we consider only substitutions that are ex-
tensions of the other argument θ to merge that cover the
parameters in tl, denoted extensions(θ, tl), and we simply
check whether el matches tl under each of the extensions.
That is, we change the two lines in (2) consisting of the last
for-clause and the first if -clause to

for θ2 in extensions(θ, tl)
if match(θ2(tl), el) �= {}

In general, the worst-case time complexity is O(|G| × |P | ×
min(substs×symbs labelpars , symbspars×(pars−1)!)×labelsize),
where labelsize is for checking a match; in the left argu-
ment of min, substs is the number of all θ’s considered, and
symbs labelpars bounds the number of extensions of a θ; in
the right argument of min, symbspars bounds the number
of all substitutions of all parameters, and each substitution
is considered at most (pars − 1)! times. The factorial fac-
tor is because each substitution for n parameters may be
considered 2n times as an extension of a substitution for a
subset of the n parameters, and 2pars + (pars − 1)2pars−1 +
(pars − 1)(pars − 2)2pars−2 + ... = O((pars − 1)!). The space
complexity is the same as for the basic algorithm.

Two drawbacks of this algorithm are its higher complex-
ity and that it prevents memoization and precomputation.
We remedy this for the usual case where each transition la-
bel contains at most one negation: we proceed as before
for the basic algorithm and for memoization and precom-
putation except for two changes. First, when matching an
edge label with a transition label that contains negation,
we record successful bindings for parameters outside and
inside the negation separately, and call them agree and dis-
agree, respectively, if the bindings are consistent and where
redundant bindings in disagree are removed. For example,
match(def(x,¬c),def(a,5)) returns a set containing a sin-
gle element that is a pair of {x �→ a} as agree and {c �→ 5}
as disagree. Second, we change the if -clause that contains
merge(θ, θ1), where θ1 is now a pair of agree and disagree, to
iterate over extensions of merge(θ, agree) that cover param-
eters in disagree and check if the extension disagrees with
some bindings in disagree. That is, we change the single line
if θ2 = merge(θ, θ1) �= badsubst in (2) and (4) to

if θ1 = merge(θ, agree) �= badsubst
for θ2 in extensions(θ1, disagree)

if merge(θ2, disagree) = badsubst

This reduces the time complexity to the same as that for
the basic algorithm, for memoization, and for precomputa-
tion, respectively, except with the factor substs replaced by
substs × 2labelpars . To see the reasons for this factor, let sa
and sd denote the sets of parameters in agree and disagree,
respectively. We have (1) the test merge(θ2, disagree) =
badsubst succeeds for all θ2’s enumerated except the one
that agrees with all in disagree, and thus all θ2’s considered
except for one will become the third component of a triple
put intoW and R, which contributes to the factor substs, (2)

fix a θ2, there are O(2|sd|) possible θ1’s for which θ2 extends
θ1 and covers sd, because in θ1 each parameter in sd has two
choices—it maps to either nothing or what θ2 maps to, (3)

224



similarly, fix a θ1, there are O(2|sa|) possible θ’s for which θ1
extends θ and covers sa, and (4) |sa| + |sd| = O(labelpars).
Thus, compared to the algorithms for without negations,
the overall complexity is increased by at most a factor of
O(2labelpars). Since labelpars is a small constant in our appli-
cations, the asymptotic time complexity remains the same.
The space complexity is the same as that for the basic al-
gorithm, for memoization, and for precomputation, respec-
tively.

4. SOLVING UNIVERSAL QUERIES
For universal queries, our basic algorithm requires a de-

terminism condition, described below, so we first convert
the parametric regular-expression pattern to a DFA (deter-
ministic finite automaton), also denoted by P , which can
be exponentially larger in the worst case, but the size of
the pattern is small in practice. However, an automaton
that appears deterministic might become nondeterministic
under some substitutions. For example, if a state has out-
going transitions labeled use(x) and use(y), then use(a)
matches both labels under substitution {x �→ a, y �→ a}.
Our algorithms handle this.

The universal query problem is: given G, v0, P , s0, and
F , compute all pairs 〈v, θ〉 such that every path from v0 to
vertex v matches some path from s0 to some state in F under
substitution θ. Again, for efficiency, we compute matching
information for reachable vertices, not individual paths. To
maintain only matches for reachable vertices v and be able
to conclude about matches for all paths to v, we require that
for each path from v0 to v in G, all paths in P that match
it (under any substitutions) pass through the same set of
states and match it under the same substitution. We call
this the determinism condition. Then we check that for all
paths from v0 to v in G, the matching paths in P all end in
states in F and that the substitutions for these matchings
all agree with each other. Our basic algorithm conserva-
tively checks the determinism condition while it proceeds;
we describe separately below how to handle the case when
the determinism check fails.

We extend the definition of reach(G,P, v0, s0) to include
triples 〈v, badstate, badsubst〉 when there is a path from v0
to v in G that does not match any path from s0 to any state
in P under any substitution. Then the universal query is
to compute all pairs 〈v, θ〉 such that for all 〈v, s, θ1〉 in the
extended reach(G,P, v0, s0), s is in F , and θ is the successful
merge of all θ1’s, i.e.,

{〈v, θ〉 | (∀〈v, s, θ1〉∈reach(G,P, v0, s0) : s∈F ) ∧
θ= merge({θ1 : 〈v, s, θ1〉∈reach(G,P, v0, s0)})
�= badsubst}

(5)

Basic algorithm. It is easy to see that rules (i) and (ii)
and the following two rules hold for computing the extended
reach(G,P, v0, s0):

(iii) if 〈v0, el, v〉∈ G and ∀〈s0, tl, s〉∈P : match(tl, el)={},
then 〈v, badstate, badsubst〉 ∈ reach(G,P, v0, s0).
(iv) if 〈v, s, θ〉∈ reach(G,P, v0, s0) and 〈v, el, v1〉∈ G and
∀〈s, tl, s1〉∈P : ∀θ1∈match(tl, el) : merge(θ, θ1)=badsubst ,
then 〈v1, badstate, badsubst〉 ∈ reach(G,P, v0, s0).

We can compute the extended reach(G,P, v0, s0) by repeat-
edly adding triples of vertex, matching state, and matching

substitution according to all four rules. Then we do two
things to compute the query result according to (5): main-
tain a bit for each vertex indicating whether all matching
states belong to F , and merge all matching substitutions.
We obtain the following basic algorithm, where R and W
are as for existential queries, matchpair tracks the current
matching state and substitution, T maps each vertex to the
bit indicating whether all matching states are final, and U is
the result of the universal query, represented as a map from
each vertex to the corresponding substitution or badsubst :

R := {}; //initialize reach set
W := {}; //initialize worklist
for 〈v0, el, v〉 in G // based on rules (i)

matchpair := null; // and (iii), and check
for 〈s0, tl, s〉 in P // determinism

for θ in match(tl, el)
if matchpair = null

matchpair := 〈s, θ〉;
W :=W ∪ {〈v, s, θ〉};

else // check determinism
if matchpair �= 〈s, θ〉;

exit(“determinism check failed”);
if matchpair = null // use rule (iii)
W :=W ∪ {〈v, badstate, badsubst〉};

T := {}; //init. test for match
U := {}; //initialize query result
while exists 〈v, s, θ〉 in W //take from worklist
R := R ∪ {〈v, s, θ〉}; //add to reach set
W :=W − {〈v, s, θ〉}; //update worklist
for 〈v, el, v1〉 in G // based on rules (ii)

matchpair := mull; // and (iv), and check
for 〈s, tl, s1〉 in P // determinism

for θ1 in match(tl, el)
if θ2 = merge(θ, θ1) �= badsubst

if matchpair = null
matchpair := 〈s1, θ2〉;
if 〈v1, s1, θ2〉 �∈ R
W :=W ∪ {〈v1, s1, θ2〉};

else // check determinism
if matchpair �= 〈s1, θ2〉

exit(“determinism check failed”);
if matchpair = null // use rule (iv)

if 〈v1, badstate, badsubst〉 �∈ R
W :=W ∪ {〈v1, badstate, badsubst〉};

if (T (v) is not defined) ∨ T (v) //update test for match
T (v) := (s ∈ F );

if T (v) //update query result
if U(v) is not defined
U(v) := θ;

else
U(v) := merge(U(v), θ); //merge substitutions

else
U(v) := badsubst ;

(6)

Negations and wildcards can be handled in the same way as
for existential queries.

We use the same data structures as for existential queries;
the only difference is that T and U can each be represented
as an additional field in the structure for each vertex.

The time and space complexities are the same as for the
basic algorithm for existential queries.
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Memoization and precomputation. We can memoize the
result of match as for existential queries and obtain the same
time and space complexities as for the algorithm with mem-
oization for existential queries.

There are also sets of repeated computations of match
similar as for existential queries, except that matching infor-
mation for each outgoing edge 〈v, el, v1〉 of v and each state
s, rather than just each vertex v and state s, is needed,
by the if -statement that tests matched, thus the target-
and-substitution map is not sufficient. We may precompute
an auxiliary map, Mds, called determinism-and-substitution
map, that maps an edge 〈v, el, v1, s〉 and state s to the
set of pairs 〈s1, θ1〉 such that there is 〈s, tl, s1〉 in P and
match(tl, el) = θ1. This yields pseudo-code similar to (3),
except with operations on Mts replaced by operations on
Mds, in place of initialization of worklist in (6); and sim-
plified update code, similar to the simplification from (2) to
(4) except with the additional tests and uses of matched and
with the use of Mts replaced by a use of Mds, in place of
update of worklist in (6).

The time complexity is the same as for existential queries,
except Mds is used in place of Mts. The space complexity
is the same as for existential queries.

Nondeterminism. When the determinism condition does
not hold, the algorithms above do not apply. We describe
two solutions: an algorithm that enumerates all substitu-
tions, and a hybrid algorithm that first does an existential
query to reduce the number of substitutions considered.

The enumeration algorithm considers all substitutions from
some or all parameters in the pattern to symbols in the
graph, and does a universal query without parameters for
each substitution. That is, for each substitution, instantiate
the pattern, convert the instantiated pattern to a DFA, and
use the algorithms described above. The total time complex-
ity is O(|G| × maxTrans × symbspars), where maxTrans
is the maximum number of transitions in the DFA’s for
the instantiated patterns, and symbspars is the number of
substitutions. This is asymptotically better than the algo-
rithm above, but enumerating all substitutions is expensive
in practice. A clear advantage of the enumeration algo-
rithm is that the space complexity is as small as O(|G| +
maxTrans + verts × maxStates + verts × substs), where
maxStates is the maximum number of states in the DFA’s
for the instantiated patterns, and the last summand is for
the output size. The same is true if we use an enumeration
algorithm for existential queries.

The hybrid algorithm refines the enumeration algorithm
by first doing an existential query with the same pattern
and obtaining a set of substitutions from the result; these
substitutions are those involved in matching on some paths.
Then we enumerate all substitutions that are extensions to
the substitutions obtained above, and do universal queries
without parameters for each of them. This idea is also used
in [6]. The asymptotic time complexity is the sum of those
for the two steps, and the asymptotic space complexity is
the same as for existential queries in the first step.

5. DISCUSSION

We discuss several tradeoffs and extensions for the para-
metric regular path query framework. We also discuss im-

provements in the complexity analysis and performance and
in the query language and usage.

5.1 Tradeoffs and summary
As in other analysis frameworks, there may be more than

one way of formulating an analysis problem using parametric
regular path queries. There are many tradeoffs involving
efficiency, readability, amount of information in the result,
etc.

Several distinct properties of this work allow users to eas-
ily test and compare the alternatives: queries can be written
declaratively and succinctly; complete algorithms and data
structures have been designed and implemented; precise run-
ning time and space usage have been analyzed, both in terms
of asymptotic complexity and useful parameters in practice;
and ways to automatically convert queries to different forms
are being investigated.

Consider the uninitialized variables examples in Section 2.2,
where forward existential queries (¬def(x))∗use(x) and
(¬(def(x)|use(x)))∗use(x) find all uses and first uses,
respectively, of uninitialized variables. These analyses can
also be expressed as backward queries. To capture the uses,
an additional parameter is used; specifically, use(x,l) de-
notes a use of variable x at, say, location l in the program.
We add an edge from v0 to v0 labeled entry(). Then the two
backward queries are ∗use(x,l)(¬def(x))∗entry() and
∗use(x,l)(¬(def(x)|use(x, )))∗entry(), respectively.

To find only names of uninitialized variables, we can use a
backward query ∗use(x)(¬def(x))∗entry(). Compared
with forward queries, the first two backward queries have a
factor O(symbs2), rather than O(symbs), in asymptotic time
because of the extra parameter, but they run much faster be-
cause x is bound by use(x, l) before the negation ¬def(x),
and a single l is paired with a use of x in use(x, l). The
forward queries start with negation ¬def(x), and x ends up
being enumerated for all possible instantiations.

We summarize several of the most important points based
on our experience; they hold for all examples we have en-
countered:

• queries can be written clearly and succinctly; patterns
always contain wildcards or negations; individual edge
labels contain at most one negation;

• patterns contain a small number of independent pa-
rameters; additional parameters can be used easily to
capture additional information;

• existential queries are used much more often than uni-
versal queries; when both kinds can be used, the ex-
istential query is easier to write and understand than
the universal query;

• forward and backward queries can be converted to each
other by introducing additional parameters, but re-
versing the order of binding of parameters may signif-
icantly affect performance;

• existential queries are much easier to process and more
efficient than universal queries; queries that bind pa-
rameters positively before negations are much faster
than queries that don’t;

• memoization and precomputation reduce asymptotic
time complexity, but can sometimes be slower in prac-
tice, and use much additional space.
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5.2 Extensions
To further enhance the expressive power of parametric

regular path queries, the framework can be extended to take
into account more general relationships, as discussed below.

Tracking equality and points-to information. Simple
equality relationships are already captured through multiple
occurrences of a parameter, but additional equality relation-
ships can be important. For example, one could (although
it is unlikely) open a file and assign it to f , subsequently
assign f to g, and then close the file through g. If the anal-
ysis does not consider the equality between f and g, it may
report false alarms—for example, that f is not closed after
it was opened—or miss errors.

To solve such equality problems, we may use the same
query and employ a separate module to track equalities.

For example, Field et al. [8] study how to check program
properties specified using regular expressions with one-level
pointers. We can extend parametric regular path queries to
express and check such properties as well. An open prob-
lem is precise time and space complexity analysis for the
extended frameworks.

Interprocedural analysis. For interprocedural program
analysis, equalities relating arguments in calls and parame-
ters in procedure definitions, and relating return values in
procedure definitions and return values of calls, need to be
captured. We have extended the framework of parametric
regular path queries for interprocedural analysis by explic-
itly tracking these two kinds of equalities. An advantage
of this approach is that the query pattern can remain un-
changed, and the equalities are tracked implicitly. We could
make this interprocedural analysis more precise by using
context free grammars to restrict the algorithm to consider
only valid interprocedural paths [14].

5.3 Complexity analysis and performance
For a given user query and query algorithm, our com-

plexity analysis result corresponds to a formula that gives
the worst-case asymptotic running time and space usage
for evaluating the query. However, the value of substs in
the formula depends on the input and is bounded only by
O(symbspars). A natural refinement is to use the sizes of the
domains of parameters, such as the number of program vari-
ables for parameter x in def(x), in place of symbs, which
counts all symbols in the program graph. Also, correlations
between the parameters, such as that there is a single pro-
gram location l associated with a use of x in use(x, l), can
be used to further refine the estimated complexity. Future
work may provide even finer complexity characterizations,
especially for the effect of negations, by exploiting additional
domain knowledge about the input graph and the query.

Considering that our algorithms are generic and do not
perform optimizations that exploit domain knowledge (al-
though such knowledge can be built into the input graph
and the query), the performance is quite good. We can
further improve the performance, especially the memory us-
age, by exploiting the connectivity of graphs. In particular,
graph vertices can be visited in a topological order of the
strongly connected components (SCCs), and after a SCC is
finished, data structures containing information about that
SCC can be de-allocated. Also, one can exploit sparsity of
relevant edge labels. In particular, since typically relatively

few different kinds of edge labels in the graph are relevant to
a query, the graph can be compacted by eliminating and col-
lapsing certain edges and vertices before solving the query.
Detailed study is needed for these, especially for taking do-
main knowledge into account.

5.4 Query language and usage
Parametric regular path queries studied thus far can use

only single labels on edges, which is why, for program anal-
ysis problems, we need to use a kind of dual of control
flow graphs and, for model checking problems, we need to
transform labeled transition systems to capture the vertices
(states) through edge labels. Also, queries do not exploit
the values of parameters besides checking equality. Finally,
parametric regular path queries can not express analyses
that involve non-regular language based patterns, such as
analysis of matching acquire and release operations for reen-
trant locks, which is equivalent to matching parentheses and
therefore needs context-free language based patterns.

We are currently extending the framework so queries can
use also vertices and vertex labels directly, including mul-
tiple labels for each vertex and edge, and can do computa-
tions involving the values of parameters. This will lead to a
very powerful query language that generalizes XPath [20] by
supporting unbounded repeating patterns on paths (via the
general Kleene star), not just unbounded skipping of path
segments, and by allowing querying of graphs, not just trees.
Extending the framework to use context-free language based
patterns is a problem open for study.

To facilitate usage of the framework, we are also studying
methods that support easier construction of efficient queries.
In particular, for certain kinds of problems, we can let the
user specify a universal property and automatically generate
existential queries for checking different kinds of violations,
as well as a merged automata for checking all kinds of vi-
olations at the same time. For example, instead of having
to write several separate queries for file operations, the user
may simply specify that on every path from the entry point
to exit point, operations on a file f must follow the pattern
(open(f)(access(f))∗close(f))∗, allowing other opera-
tions to occur anywhere.

6. IMPLEMENTATION AND EXPERIMENTS
Our tool is divided into front-ends, which take an input

and convert it into an edge-labeled graph, and back-ends,
which take that graph and an automaton, apply the para-
metric regular path query, and output the result.

We have multiple front-ends. One reads C programs and
creates intraprocedural control flow graphs labeled with def
and use, as in Section 2. The generated control flow graph
may optionally include a sequence number with each use, al-
lowing the generated graph to be used for forward and back-
ward uninitialized use analysis. This front-end was imple-
mented using CodeSurfer and consists of 682 lines of Scheme.

Another front-end reads transition systems taken from
the Very Large Transition Systems web site (http://www.
inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html).
These transition systems were produced automatically from
formal descriptions of real-life concurrent systems, and are
suitable for use as input to model checking algorithms. By
exploiting existing tools, we were able to implement this
front-end with less than a hundred lines of new code.
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graph result basic precomputation enumeration
input LOC edges size worklist time worklist time worklist time substs

cksum 236 521 20 3,749 0.01s 3,749 0.00s 10,573 0.04s 40
sum 198 714 23 3,620 0.01s 3,620 0.01s 22,551 0.07s 57

expand 317 971 46 7,650 0.03s 7,650 0.02s 40,746 0.14s 75
uniq 406 1,696 147 33,657 0.13s 33,657 0.07s 127,393 0.47s 134
cut 603 2,124 92 37,878 0.15s 37,878 0.07s 181,252 0.67s 146

C-parser 1,847 4,260 97 60,621 0.24s 60,621 0.13s 447,995 1.72s 207
iburg 649 5,672 93 87,606 0.36s 87,606 0.19s 1,206,845 4.57s 377
struct 1,699 6,022 128 148,609 0.61s 148,609 0.31s 1,101,780 4.34s 333
ratfor 1,261 7,617 369 191,809 0.82s 191,809 0.42s 1,405,965 5.48s 361

Table 1: Algorithm performance for the detection of uninitialized variable uses.

graph result basic precomputation enumeration
input states edges size worklist time worklist time worklist time substs

vasy-0-1 289 1,513 1,224 1,802 0.01s 1,802 0.01s 85,034 0.87s 289
cwi-1-2 1,952 4,339 2,387 6,291 0.04s 6,291 0.05s 3,814,643 26.83s 1,952

vasy-1-4 1,183 5,647 4,464 6,830 0.05s 6,830 0.05s 1,405,136 15.72s 1,183
vasy-5-9 5,486 14,878 9,392 20,364 0.13s 20,364 0.16s n/d n/d 5,486
cwi-3-14 3,996 18,548 14,552 22,544 0.15s 22,544 0.18s n/d n/d 3,996

vasy-8-24 8,879 33,290 24,411 42,169 0.32s 42,169 0.35s n/d n/d 8,879
vasy-8-38 8,921 47,345 38,424 56,266 0.40s 56,266 0.43s n/d n/d 8,921

vasy-10-56 10,849 67,005 56,156 77,854 0.60s 77,854 0.60s n/d n/d 10,849

Table 2: Algorithm performance for the detection of transition system deadlocks. n/d means that the analysis
was not completed in a 180 second time limit.

While the data discussed in this section is generated by
the two front-ends described above, we also have others,
which support interprocedural file operation analysis for C
and def-use analysis for Python. We are able to use the
same automaton to perform uninitialized use analysis for C
and Python.

We also have multiple back-ends corresponding to differ-
ent variants of the algorithms given above. All back-ends
are written in a high-level language similar to the pseudo
code given in Sections 3 and 4, which is translated to C++
by a Python program. The translator takes care of imple-
mentation details such as data structure selection [15] and
multiset discrimination [3]. One of the benefits of using a
translator to generate the C++ code is that we can eas-
ily experiment with changes in precomputation and data
structure representation. The high-level source files for the
variants range from 50 to 118 lines, and each is translated
into over a thousand lines of C++.

To illustrate the performance of the algorithms, we first
present running times for the algorithms as applied to pro-
gram analysis. Table 1 gives performance information for
detecting all uses of uninitialized variables in C programs.
All timings are recorded on a Pentium 4 running at 2.0
GHz. The enumeration variant was used for the forward
query given in Section 2.2, while the basic and precompu-
tation variants were used for the backward query given in
Section 5.1. The size of the result set is the number of pos-
sibly uninitialized uses found in each program.

Table 2 summarizes the performance for deadlock detec-
tion on a transition graph. The query is given in Section 2.3.
It is a forward query that contains no negation of unbound
variables, and all three variants were used for it.

The first finding supported by these experiments is that
enumeration is slower than the other two variants of the
algorithms. The early introduction of substitutions forces

the total amount of work to scale with both the size of the
graph and the number of substitutions. This can lead to
quadratic behavior where other variants are linear.

A second finding is that the performance increase provided
by precomputation is highly dependent on the precise con-
struction of the graph and automaton. In the uninitialized
uses analysis, precomputation roughly halves the running
time of the program, while in deadlock analysis, precompu-
tation does not provide a consistent benefit. In the dead-
lock analysis, the main worklist contains only a small num-
ber of triples per vertex, and the graph and the automaton
have small out-degree. These factors conspire to keep the
improvement offered by precomputation small, or in some
cases, negative. The larger number of worklist triples en-
countered in the uninitialized uses analysis allows the cost
of precomputation to be amortized, leading to a significant
speedup.

The core of our algorithms involves operations on sets
and maps, so the design of these data structures strongly
affects the memory usage and running time. We tried several
variants before settling on the two best. Both are derived
from the based representations in [15], but differ in how
tuples are represented in sets. When a set is queried for
elements matching one or more keys, both representations
use the first key to find a unique base containing information
about set membership. This base may need to be indexed
by a second or later key to determine set membership. This
indexing can be performed by using a level of nested arrays
for each additional key, or lookup in a hash table of all the
additional keys. A variant using hashing without basing was
also tried, but was rejected as inferior in both space and time
usage.

Table 3 shows how these representations provide differ-
ent time and space tradeoffs. Using nested arrays is fastest
only when enumeration is used, and it uses a large amount
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basic precomputation enumeration
hashing nested hashing nested hashing nested

input mem time mem time mem time mem time mem time mem time
cksum 149k 0.01s 324k 0.02s 181k 0.00s 390k 0.01s 23k 0.04s 22k 0.03s

sum 146k 0.01s 461k 0.02s 197k 0.01s 582k 0.01s 32k 0.07s 31k 0.07s
expand 315k 0.03s 1,118k 0.03s 359k 0.02s 1,172k 0.02s 43k 0.14s 44k 0.12s

uniq 1,294k 0.13s 4,292k 0.13s 1,370k 0.07s 4,303k 0.07s 75k 0.47s 91k 0.43s
cut 1,429k 0.15s 6,135k 0.16s 1,531k 0.07s 5,639k 0.09s 90k 0.67s 83k 0.63s

C-parser 2,300k 0.24s 16,521k 0.29s 2,486k 0.13s 15,730k 0.14s 163k 1.72s 162k 1.57s
struct 5,540k 0.61s 36,921k 0.66s 5,989k 0.31s 38,191k 0.35s 233k 4.34s 247k 4.05s
ratfor 7,201k 0.82s 70,949k 0.94s 7,831k 0.42s 65,196k 0.48s 215k 5.48s 272k 5.31s

Table 3: Time and memory usage for hashing and nested array implementations of uninitialized uses.

Figure 3: Worklist size and running time, respec-
tively, versus graph size, for uninitialized variables
and uses.

of space to represent sparse sets, such as the target-and-
substitution map. If a set is very sparse, the cost to ini-
tialize the memory may outweigh the savings from eliminat-
ing hashing. The space usage of hashing is less than that
of nested arrays, and the running time is similar, gener-
ally making a based hash representation (the second option
above) the best, when it fits into memory. Table 3 also
shows that an advantage of using enumeration is that the
memory usage is much smaller than the other two variants,
at the cost of much larger running time.

The running time of the algorithms is affected by the size
and composition of the graph and automaton. Figure 3 plots
the size of (i.e., total number of elements inserted in) the
worklist and the running time of the basic algorithm against
the size of the program. Both plots look identical, providing
another strong indication that, on practical graphs, running
time is strongly tied to worklist size. In practice, the size
of this worklist appears to grow at a rate slightly greater
than linear, with the precise amount of work done highly
dependent on the actual input data.

7. RELATED WORK AND CONCLUSION
Existential regular path queries without parameters have

been studied and used for querying databases and semi-
structured data [21, 1], but parameters are essential for ex-
pressing correlations of information in different parts of the
data. For example, parameters are needed in querying sys-
tem logs for intrusion detection [16], and in many other ap-
plications that use regular expression packages for matching

strings, even though not graphs. Many interesting applica-
tions of regular path queries in program analysis and model
checking require parameters, as shown by the examples in
this paper.

Engler et al. [10] demonstrated that program analyses ex-
pressed as state machines can be very effective at finding de-
fects in software. Global state machines and variable-specific
state machines in their framework roughly correspond to ex-
istential regular path queries with zero parameters and one
parameter (which gets bound to the associated variable),
respectively; this is illustrated by the interrupts and freed
memory examples in Section 2. ESP [5] and CQUAL [9] deal
with a similar class of properties. These projects focus on
defect detection and verification for C programs. In contrast
to these and other dataflow frameworks and type systems for
analyzing program properties and ensuring program safety,
our focus is on a general graph analysis framework that can
easily be applied to C programs, Python programs, XML
data, labeled transition systems, etc., and that supports a
precisely defined and more expressive query language with
negation, multiple parameters, and universal queries.

de Moor et al. [6] showed that universal parametric reg-
ular path queries are useful for compiler analysis and op-
timizations. They give a high-level algorithm for solving
universal queries without parameters and describe an imple-
mentation of it as a logic program. Liu and Yu [12] designed
a complete algorithm with detailed data structures for solv-
ing universal queries without parameters. That algorithm
requires the finite automaton to be complete, which usu-
ally means adding explicit transitions to a trap state; this
can significantly increase actual space usage. The algorithm
in this paper handles incomplete automata directly, saving
space. Drape et al. [7] describe how to program univer-
sal parametric queries as logic programs but do not give a
direct algorithm for solving such queries. Sittampalam et
al. [17] developed an incremental algorithm for solving uni-
versal parametric queries on restricted graphs expressible as
walks on trees; the algorithm can be much faster than a
batch algorithm for recomputation after a subtree replace-
ment, but it has a high overhead and worse complexity for
batch analysis even for the restricted graphs it can handle.

A major contribution of this paper is the first complete
algorithms and data structures for directly and efficiently
solving existential and universal parametric regular path
queries. Other major contributions of this paper compared
to all of the work cited above are very detailed complexity
analysis of the algorithms for solving the queries, detailed
performance comparison of variations of the algorithms and
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data structures, and investigation of efficiency tradeoffs be-
tween different formulations of a query. We have derived
the basic algorithms using a methodology based on formal
specification and transformation, which helps ensure cor-
rectness and supports precise complexity analysis. Due to
space limitations, details of the derivations are not given in
this paper.

Reps et al. [14] showed how to perform precise interproce-
dural dataflow analysis by using graph reachability to elim-
inate infeasible interprocedural paths. This technique can
be incorporated into many program analysis frameworks,
including ours. While their work focuses on identifying fea-
sible interprocedural paths, our work focuses on a simple
and powerful language for expressing analyses and on the
detailed design and complexity analysis of the analysis al-
gorithms.

Parametric regular path queries are not as powerful as
some other analysis frameworks, such as set constraints [11,
2] and temporal logic [18], but they are more perspicuous
and convenient, and they are sufficiently powerful to express
many interesting properties in many application domains,
and they can easily be used within more powerful frame-
works when necessary. Parameters support correlation of
information along paths. This is also the idea underlying
trace-based program analysis [4], which uses powerful but
heavy-weight symbolic execution techniques.
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