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Abstract
This paper describes the design, analysis, and implementation of
an efficient algorithm for information flow analysis expressed us-
ing a type system. Given a program and an environment of secu-
rity classes for information accessed by the program, the algorithm
checks whether the program is well typed, i.e., there is no informa-
tion of higher security classes flowing into places of lower security
classes according to a lattice of security classes, by inferring the
highest or lowest security class as appropriate for each program
node. We express the analysis as a set of Datalog-like rules based
on the typing and subtyping rules, and we use a systematic method
to generate specialized algorithms and data structures directly from
the Datalog-like rules. The generated implementation traverses the
program multiple times and uses a combination of linked and in-
dexed data structures to represent program nodes, environments,
and types. The time complexity of the algorithm is linear in the
size of the input program, times the height of the lattice of secu-
rity classes, plus a small overhead for preprocessing the security
classes. This complexity is confirmed through our prototype im-
plementation and experimental evaluation on code generated from
high-level specifications for real systems.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—information flow controls; D.4.6 [Oper-
ating Systems]: Security and Protection—access controls; D.3.4
[Programming Languages]: Language Classifications—constraint
and logic languages; D.3 [ProgrammingLanguages]:Processors—
code generation, optimization; E.1 [Data]: Data Structures—
arrays, lists, queues, records; F.2 [Analysis of Algorithms and
Problems Complexity]: Nonnumerical Algorithms and Problems—
computations on discrete structures; I.2.2 [Artificial Intelligence]:
Automatic Programming—Program transformation; E.2 [Data]:
Data Storage Representations—linked representations

General Terms security, algorithms, languages, performance

Keywords information flow, type inference, security, algorithm,
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1. Introduction

Protection of the confidentiality and privacy of data is becoming
increasingly important. Apart from controlling the release of infor-
mation, it is also essential to control the information flow, espe-
cially in untrusted code. Static analysis of information flow in pro-
grams allows for fine-grained control through a number of security
classes, without a runtime overhead. Security classes indicate both
the level of secrecy and the level of integrity of data.

Denning [10, 11] proposed a lattice model that could be used to
verify secure information flow in programs. In this model security
classes are ordered in a lattice and program variables and data are
each assigned a security class. The lattice of security classes can
be used to formulate security requirements for programs. Based on
Denning’s lattice model of information flow analysis, several type-
based approaches have been developed [ 24, 27, 19, 1, 5]. In these
works the security properties are formulated as type systems —
formal systems of typing rules used to reason about information
flow properties of programs.

This paper describes the design, analysis, and implementation
of an efficient algorithm for information flow analysis expressed
using a type system. This work is based on the type system pre-
sented by Volpano et al. in [27], that formulates Denning’s lattice
model and is shown to be sound. Information flow is guaranteed to
be secure for a program if the program type checks correctly.

Given a program and an environment of security classes for in-
formation accessed by the program, the algorithm checks whether
the program is well typed, i.e., there is no information of higher se-
curity classes flowing into places of lower security classes accord-
ing to a lattice of security classes, by inferring the highest or lowest
security class as appropriate for each program node. We express the
analysis as a set of Datalog-like rules based on the typing and sub-
typing rules, and we use a systematic method to generate special-
ized algorithms and data structures directly from the Datalog-like
rules. Datalog is a database query language based on the logic pro-
gramming paradigm [8, 2]. Our Datalog-like rules are Datalog rules
with negation and external functions. The method described in [ 15]
is used to generate specialized algorithms and data structures and
complexity formulas for the Datalog-like rules. Given a program
and an environment of security types, the algorithm infers mini-
mum or maximum security types, as appropriate, for each program
node, such that the program type checks correctly. The algorithm
traverses the program top-down multiple times to infer minimum
expression types, and then traverses the program bottom-up once
to infer maximum command types. The generated implementation
uses a combination of linked and indexed data structures to repre-
sent program nodes, environments, and types. The implementation
employs an incremental approach that considers one program node
at a time. The running time is optimal for the set of rules we use
to specify type inference, in the sense that each combination of in-
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stantiations of hypotheses is considered once in O(1) time. We thus
obtain an efficient type inference algorithm.

The time complexity of the algorithm is linear in the size of the
input program, times the height of the lattice of security classes,
plus a small overhead for preprocessing the security classes. This
complexity is confirmed through our prototype implementation
and experimental evaluation on code generated from high-level
specifications for real systems.

Our main contributions are the following:

• We propose a novel implementation strategy for type inference
for secure information flow types. The strategy combines an in-
tuitive specification of type inference expressed in Datalog-like
rules, and a systematic method for deriving efficient algorithms
and data structures from the Datalog-like rules [15].

• We provide precise and automated time complexity analysis for
type inference for secure information flow types. The time com-
plexity is calculated directly from the Datalog-like rules, based
on a thorough understanding of the algorithm and data struc-
tures generated, reflecting the complexities of implementation
back into the Datalog-like rules.

We thus develop a method for type inference for information
flow analysis with a good algorithm understanding and time com-
plexity guarantee.

The rest of this paper is organized as follows. Section 2 reviews
the lattice model of analyzing information flow in programs and the
type system for secure flow analysis [27], and defines the problem
of type inference for secure information flow. Section 3 expresses
type inference in Datalog-like rules, and describes generation of an
efficient algorithm and data structure from the Datalog-like rules.
Section 4 presents the time complexity analysis for the generated
algorithm. Section 5 presents experimental results. Section 6 dis-
cusses related work and concludes.

2. A Type System for Secure Information Flow

This section reviews the lattice model of information flow [10, 11]
that underlies the type system used in the this work for analyzing
secure information flow, and the type system formulated in [27].

2.1 Lattice model of secure information flow

In the lattice model of information flow [11, 10] security classes
are defined as a lattice, denoted by (SC,≤) — a finite number of
security classes SC, partially ordered by ≤. A security class is an
indication of (i) the level of secrecyof the data — how confidential
the data is, (ii) the level of integrity of the data — how trusted
the data is, or (iii) a combination of these two properties. Every
program variable is associated with a security class; the security
classes of variables can be determined statically and do not vary
at run time. Every program node is associated with a certification
condition — a condition relating security classes of neighboring
nodes that checks whether the information flow in the node is
secure.

Information is considered to flow from variable v1 into variable
v2 whenever the value stored in v1 affects the value stored in v2.
The lattice model of information flow considers two types of in-
formation flows: explicit flows and implicit flows. An explicit flow
result from assigning the value of a variable to another variable. Im-
plicit flows are results of other constructs, for example, an implicit
flow exists from the value of a conditional guard to the branches of
a conditional. For example, in the following if-statement:

if a=0 then b:=1 else b:=0

there is an implicit flow from variable a to variable b, since after
the statement has been executed, by the value of variable b we can
determine whether the value of a is 0.

Flow is controlled by use of a flow relation, denoted by →. The
flow relation is defined on pairs of security classes and indicates
the permitted information flows in the program. A → B, where
A and B are security classes, indicates that information is permit-
ted to flow from variables of class A into variables of class B. A
flow is considered a secure flow if it does not violate the flow re-
lation. Specifically, the flow relation in the lattice model is defined
according to the lattice of security classes. A flow from a variable
of security class x to a variable of security class y is permitted if
x ≤ y in the lattice of security classes.

The lattice model of information flow makes it possible to check
conditions on both explicit and implicit information flows. This can
be achieved by checking the certification conditions on program
constructs.

2.2 Type system for secure flow analysis

The type system for secure information flow [27] builds on the
foundation of the lattice model of information flow. This system
essentially formulates Denning’s work [10, 11] as a type system.
The resulting type system guarantees secure explicit and implicit
flows as defined in the lattice model.

The security types are assumed to form a partial order, denoted
by ≤. The partial order relation ≤ is extended to a subtype relation,
denoted by ⊆.

Two levels of types are used:

• data types are denoted by τ and range over the set of security
types;

• phrase types are denoted by ρ and range over (i) data types,
given to expressions— τ ; (ii) types given to variables — τ var;
and (iii) types given to commands — τ cmd.

A variable of type τ var stores information whose security class
is type τ or lower; a command of type τ cmd contains assignments
only to variables of type τ or higher.

A phrase is an expression or a command. The type system
accommodates for the following expressions and commands:

(expressions) e ::= x | l | n | e1 + e2 | e1 − e2 |
e1 = e2 | e1 < e2

(commands) c ::= e1 := e2 |
c1; c2 |
if e then c1 else c2 |
while e do c |
letvar x := e in c

Expressions range over identifiers x, locations l, integer liter-
als n, and arithmetic expressions. Commands of the forms shown
above are, respectively, assignments, compositions, conditional
commands, and local variable (i.e. identifier) declarations.

The typing rules consist of typing judgments that are of the form
λ; γ � p : ρ, where γ is a mapping of identifiers to security types
and λ is a mapping of locations to security types. The meaning of
this typing judgment is that phrase p has type ρ, if identifiers and
locations in p have security types as assigned in γ and λ.

γ[x : ρ] denotes a modification of γ that assigns type ρ to
identifier x and leaves any other identifier-type mappings in γ
unchanged. γ(x) and λ(l) denote the types of identifier x and
location l, respectively, in γ and in λ.

A typing rule is of the form:

J1, J2, ..., Jn

Jn+1
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(BASE) r ≤ r1
� r ⊆ r1

(REFLEX) � ρ ⊆ ρ

(TRANS) � ρ ⊆ ρ1, � ρ1 ⊆ ρ2
� ρ ⊆ ρ2

(CMD)− � ρ ⊆ ρ1

� ρ1 cmd ⊆ ρ cmd

(SUBTYPE) λ; γ � p : ρ
� ρ ⊆ ρ1
λ; γ � p : ρ1

Figure 1: Subtyping rules.

where Ji’s are typing judgments. The typing judgment above the
line are referred to as hypotheses of the typing rule, and the type
judgment below the line is the conclusion of the rule. The rule in-
fers a typing judgment of the form of the judgment in its conclu-
sion, if all hypotheses of the rule are known to be correct — each
of them is either an axiom or has been inferred by the typing rules.

The rules for the subtyping logic are shown in Figure 1. The
typing rules for secure information flow are shown in Figure 2.
Only a typing rule for one arithmetic expression is shown, since
ones for the other arithmetic expressions are defined in the same
way. The typing rules corresponddirectly to certification conditions
in the lattice model.

The typing rule ARITH is used to infer the types of arithmetic
expressions. The rule says that if we have a sum of two expressions
e and e1, and both expressions are of security type τ , then we can
infer that the type of the expression e+e1 is also τ . Note that if the
types of e and e1 do not match, either one or both of them can be
coerced to higher security types, according to the subtyping rules,
so that they do match. However, the types of expressions cannot be
coerced to lower types.

The ASSIGN rule checks the explicit information flow in assign-
ment commands. The expressions, e and e1 must agree on their se-
curity type τ . If this is the case, the assignment command is given a
type τ cmd. If the types of e and e1 are not the same, and the type
of e1 is lower than that of e, it may be possible to coerce the type of
e1 to the type of e. However, if the type if e1 is higher than that of
e, the assignment command causes information to flow from a high
security type to a place of low security class, and the expression
would fail to type correctly.

The typing rules for conditionals — IF and WHILE, check
whether implicit flow are secure. These rules require that the con-
ditional guard expressions have lower or equal security types to
those of the commands in the branches, since there is an implicit
flow from the guard to the branches of the conditional. In addition,
the two commands in the branches of if-statements need to have
the same type or their types must be coercible to a third, lower than
both, type.

The LETVAR rule ensures that information flow in declaring
local variables is secure. If a local variable x is initialized to the
value of expression e of type τ , and the scope of x is command
c, the identifier-type mapping γ is updated to contain a mapping
of variable x to type τ . This guarantees that the explicit flow from
expression e to the newly declared variable x is secure.

Given a program, and an environment of security types for
locations accessed by the program, type inference is the process of
inferring all possible types for each program node, if possible, so

(INT) λ; γ � n : τ

(VAR) λ; γ � x : τ var if γ(x) = τ var

(VARLOC) λ; γ � l : τ var if λ(l) = τ

(ARITH) λ; γ � e : τ
λ; γ � e1 : τ
λ; γ � e + e1 : τ

(R-VAL) λ; γ � e : τ var
λ; γ � e : τ

(ASSIGN) λ; γ � e : τ var
λ; γ � e1 : τ
λ; γ � e := e1 : τ cmd

(COMPOSE) λ; γ � c : τ cmd
λ; γ � c1 : τ cmd
λ; γ � c; c1 : τ cmd

(IF) λ; γ � e : τ
λ; γ � c : τ cmd
λ; γ � c1 : τ cmd
λ; γ �if e then c else c1 : τ cmd

(WHILE) λ; γ � e : τ
λ; γ � c : τ cmd
λ; γ �while e do c : τ cmd

(LETVAR) λ; γ � e : τ
λ; γ[x : τ var] � c : τ1 cmd

λ; γ �letvar x := e in c : τ1 cmd

Figure 2: Typing rules for secure information flow.

that the program is well-typed. Otherwise, type errors are reported.
If the program is well-typed with respect to the secure information
flow type system presented, information flow in the program is
guaranteed to be secure.

3. Efficient Type Inference Algorithm and Data
Structures

This section expresses type inference using Datalog-like rules and
describes the generation of a specialized algorithm and data struc-
tures for type inference from the Datalog-like rules.

Type inference is generally done by using variables for un-
known types of commands and expressions, and collecting con-
straints in the form of type inequalities, that the type variables must
satisfy in order for the program to be well-typed. Thus, in effect,
all types that make the program typed correctly are inferred. The
idea of our type inference algorithm is, given types for locations,
we infer the lowest or highest security type for each program node,
as appropriate, that the node can have in order for the program to
be well-typed.

We define Datalog-like rules that we use to traverse the syntax
tree of the program. The algorithm traverses the program top-
down multiple times to infer minimum expression types, and then
traverses the program bottom-up once to infer maximum command
types.
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3.1 Expressing type inference in Datalog-like rules

A Datalog program is a finite set of relational rules of the form

p1(x11, ..., x1a1) ∧ ... ∧ ph(xh1, ..., xhah) → q(x1, ..., xa)

where h is a natural number, each pi (respectively q) is a relation of
ai (respectively a) arguments, each x ij and xk is either a constant
or a variable, and variables in xk’s must be a subset of the variables
in xij’s. If h = 0, then there are no pi’s or xij’s, and xk’s must be
constants, in which case q(x1, ..., xa) is called a fact. For the rest
of the paper, “rule” refers only to the case where h ≥ 1, in which
case each pi(xi1, ..., xiai) is called a hypothesis of the rule, and
q(x1, ..., xa) is called the conclusion of the rule. The meaning of
a set of Datalog rules and a set of facts is the smallest set of facts
that contains all the given facts and all the facts that can be inferred,
directly or indirectly, using the Datalog rules.

We use lEnv to denote a map from locations to their security
types. This map corresponds to λ in the type system for secure
information flow. lEnv is global and is an implicit parameter to
all hypotheses and conclusions in our Datalog-like rules. We use
the following relations in our Datalog-like rules. The relations used
represent program nodes of the input program are:

• root(c): denotes the root of the syntax tree for the program.

• literal(n): denotes that n is a literal.

• loc(l): denotes that l is a location.

• id(x): denotes that x is an identified.

• arith(e,e1,e2): denotes that expression e performs an arith-
metic operation on the values of expressions e1 and e2.

• assign(c,x,e): denotes that command c is an assignment of
expression e to the id or location x.

• if(c,e,c1,c2): denotes that command c is an if-command,
where expression e is the condition of that statement, while c1
and c2 are the commands that are executed when the condition
is true or false, respectively.

• while(c,e,c1):denotes that commandc is a while-command,
where expression e is its condition, and c1 is the command that
is repeatedly executed while e evaluates to true.

• compose(c,c1,c2): denotes that command c is the composi-
tion of commands c1 and c2, such that c1 is executed before
c2.

• letvar(c,x,e,c1): denotes that command c is a local vari-
able declaration, such that the variable x is initialized to the
value of expression e and the scope of x is the command c1.

The following relations are used to represent inferred types of
program nodes and error messages about information flow in the
program:

• type(p,t): Denotes that program node p has type t. There
may be multiple type facts for a program node. It is only
necessary to keep the one with the highest type inferred so far.

• htype(c,t): Denotes that the maximum type of command c
is t. The maximum type for a command is the highest type the
command can have for the program to type correctly.

• error(l): Denotes an information flow error — insecure in-
formation flow into location l. A fact of the error relation is
inferred when an assignment statement assigns data to a loca-
tion, and the data has a higher security type than the location. If
a fact of the error relation is inferred, then the program cannot
type correctly.

In addition, the functions Join(t1,t2) and Meet(t1,t2) re-
turn, respectively, the least upper bound and the greatest lower
bound of two security types t1 and t2. Both Join and Meet are
defined for any two security types, since the types form a lattice.
We can either precompute the least upper and greatest lower bound
for each possible pair of security types, or compute them as needed
during type inference, possibly with memoization. Efficient algo-
rithms to compute Meet and Join are presented by Hassan et. al in
[3]. The authors present three different algorithms for computing
least upper bound and greatest one is based on a transitive closure
approach, the second is a more space-efficient method, and the last
one employs a grouping technique base on modulation — it drasti-
cally reduces the the code size, while keeping time complexity low.
Time complexity of computing the complete least upper bound and
greatest lower bound relation for a lattice is O(s2×log s), where
s is the size of the lattice. Time complexity for computing least
upper bound or greatest lower bound for a single pair of types is
O(log s).

The set of Datalog-like rules used for type inference is shown
in Figure 3 and Figure 4. The typing rules in Figure 2 can be
written directly as Datalog-like rules, but efficient analysis needs
to follow a predetermined procedure of traversing the program
top-down multiple times to infer minimum expression types, and
then traversing the program bottom-up once to infer maximum
command types, so we have rewritten the rules to express the
procedure. Specifically, the rules in Figure 3 infer minimum types
for expressions; the rules in Figure 4 infer maximum types for
commands.

The rules are sound and complete with respect to the typing and
subtyping rules in Section 2. Soundness is the property that if our
rules infer a type assignment, expressed as the type relation for
expressions and the htype relation for commands, then types for
expressions and commands in it satisfy the typing rules in [ 27].
Specifically, our inferred type facts for expressions and htype
facts for commands are valid type assignments according to the
rules in Section 2. With the subtyping rules, higher expression types
and lower command types also satisfy the rules. The soundness
of our type inference algorithm can be proved by a structural
induction. The proof is beyond the scope of this paper.

Completeness is the property that if a type assignment satisfies
the rules in [27], then our rules infer a type assignment too, and
our inferred expression types, expressed in the type relation, are
no higher than the corresponding expression types inferred by the
typing rules in [27], and our command types, expressed as the
htype relation, are no lower than the command types inferred by
the tying rules in [27]. The completeness of our type inference
algorithm can be proved by an induction on derivations using our
rules. However, the proof is beyond the scope of this paper.

3.2 Generation of efficient algorithms and data structures

Transforming the set of Datalog-like rules into an efficient imple-
mentation uses the method in [15] for Datalog rules; negations in
our rules are simply constant time checks, and most of external
functions are accounted for separately. The method has three steps.

• Step 1: transforms the least fixed point (LFP) specification of
the Datalog-like rule set to a while-loop.

• Step 2: transforms expensive set operations in the loop into
incremental operations.

• Step 3: designs appropriate data structures for each set, so
that operations on it can be implemented efficiently.

These three steps correspond to dominated convergence [ 7],
finite differencing [18], and real-time simulation [17], respectively,
as studied by Paige et al.
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(ROOT)
1. root(c)→type(c, bottom)

(INT LITERAL)
2. literal(n)→type(n,bottom)

(VARLOC)
3. loc(l)→type(l,lEnv(l))

(ARITH)
4. arith(e,e1,e2),type(e1,t1),type(e2,t2)→type(e,Join(t1,t2))

(ASSIGN VAR)
5. assign(c,x,e),not loc(x),type(e,t1),type(c,t2),type(x,t3)→type(x,Join(Join(t1,t2),t3))

(ASSIGN VARLOC)
6. assign(c,l,e),loc(l),type(l,t1),type(e,t2),not(t2⊆t1)→error(l)
7. assign(c,l,e),loc(l),type(l,t1),type(c,t2),not(t2⊆t1)→error(l)

(COMPOSE)
8. compose(c,c1,c2),type(c,t)→type(c1,t)
9. compose(c,c1,c2),type(c,t)→type(c2,t)

(IF)
10. if(c,e,c1,c2),type(e,t1),type(c,t2)→type(c1,Join(t1,t2))
11. if(c,e,c1,c2),type(e,t1),type(c,t2)→type(c2,Join(t1,t2))

(WHILE)
12. while(c,e,c1),type(e,t1),type(c,t2)→type(c1,Join(t1,t2))

(LETVAR)
13. letvar(c,x,e,c1),type(e,t)→type(x,t)
14. letvar(c,x,e,c1),type(c,t)→type(c1,t)

Figure 3: Datalog-like rules for inference of minimum expression types and associated command types.

(ASSIGN VAR MAX) 15. assign(c,x,e),not loc(x),type(x,t)→htype(c,t)

(ASSIGN VARLOC MAX) 16. assign(c,l,e),loc(l),type(l,t)→htype(c,t)

(COMPOSE MAX) 17. compose(c,c1,c2),htype(c1,t1),htype(c2,t2)→htype(c,Meet(t1,t2))

(IF MAX) 18. if(c,e,c1,c2),htype(c1,t1),htype(c2,t2)→htype(c,Meet(t1,t2))

(WHILE MAX) 19. while(c,e,c1),htype(c1,t)→htype(c,t)

(LETVAR MAX) 20. letvar(c,x,e,c1),htype(c1,t)→htype(c,t)

Figure 4: Datalog-like rules for inference of maximum command types.

Fixed-point specification and while-loop. We represent a
relation of the form Q(a1, a2, ... , an) using tuples of the
form [Q,a1,a2,...,an]. We use S with X and S less X to
mean S ∪ {X} and S − {X}, respectively. We use the notation

{X : Y1 inS1, . . . , Yn in Sn|Z}
for set comprehension. Each Y i enumerates elements of Si; for
each combination of Y1, . . . , Yn if the value of boolean expression
Z is true, then the value of expression X forms an element of the
resulting set. If Z is omitted, it is implicitly the constant true.

The notation E{Ys}, where E = {[Ys,Xs]} is an auxiliary
map, stands for {Y s : [Xs Y s] in E} and is referred to as the
image set of Y s under a map E. The notation E{Y s} = [Xs] is
used to add the list of tuples [Y s Xs] to the map E. The notation
dom(E), stands for {Xs : [Xs Y s] in E}.

LFP(S0, F ) denotes the minimum element S, with respect to
the subset ordering ⊆, that satisfies the condition S0 ⊆ S and
F (S) = S. We use standard control constructs while, for, if,
and case, and we use indentation to indicate scope. We abbreviate
X := XopY as Xop:= Y .

Initially, we have the given program P and lEnv — a map of
locations and their corresponding security types.The given facts
represent the program and are denoted by program. We denote by
rprogram the set of given facts, represented as tuples as described
above.

rprogram =
{[root, c]: root(c) in program} ∪
{[literal,n]: literal(n) in program}∪
{[id,x]: id(x) in program} ∪
{[loc,l]: loc(l) in program}∪
{[arith,e,e1,e2]: arith(e,e1,e2) in program} ∪
{[assign,c,e1,e2]: assign(c,e1,e2) in program} ∪
{[compose,c,c1,c2]: compose(c,c1,c2) in program} ∪
{[if,c,e,c1,c2]: if(c,e,c1,c2) in program} ∪
{[while,c,e,c1]: while(c,e,c1) in program} ∪
{[letvar,c,x,e,c1]: letvar(c,x,e,c1) in program}

Given any set of facts R, and a Datalog-like rule with rule
number n and with relation e in the conclusion, let ne(R), referred
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rule names rule numbers time complexity with time complexity with
precomputed Join and Meet computing Join and Meet as needed

ROOT 1 O(1) O(1)
INT LITERAL 2 O(#literal) O(#literal)
VARLOC 3 O(#loc) O(#loc)
ARITH 4 O(#arith×h) O(#arith×h×log s)
ASSIGN VAR 5 O(#assignVar×h) O(#assignVar×h×log s)
ASSIGN VARLOC 6,7 O(#assigVarloc) O(#assignVarloc)
COMPOSE 8,9 O(#compose×h) O(#compose×h)
IF 10,11 O(#if×h) O(#if×h×log s)
WHILE 12 O(#while×h) O(#while×h×log s)
LETVAR 13,14 O(#letvar×h) O(#letvar×h)
ASSIGN VAR MAX 15 O(#assignVar) O(#assignVar)
ASSIGN VARLOC MAX 16 O(#assignVarloc) O(#assignVarloc)
COMPOSE MAX 17 O(#compose) O(#compose×log s)
IF MAX 18 O(#if) O(#if×log s)
WHILE MAX 19 O(#while) O(#while)
LETVAR MAX 20 O(#letvar) O(#letvar)

total time complexity: min(O(p×h + s2×log s),
O(p×h×log s)

Figure 5: Time complexity of type inference.

to as resultset, be the set of all facts that can be inferred by rule n
given the facts in R. Here we show the resultsets for the Datalog-
like rules corresponding to compose commands in the program.
The rest of the resultsets are defined in the same way.

8type = {[type,c1,t]:
[compose,c,c1,c2] in R and
[type,c,t] in R}

9type = {[type,c2,t]:
[compose,c,c1,c2] in R and
[type,c,t] in R}

The meaning of the given facts and the Datalog-like rules used
for type inference is LFP({},F), where F(R) is the sum of all
resultsets, that is:

LFP({},F), where F(R)=
1type(R)∪ 2type(R)∪ 3type(R)∪ 4type(R)∪
5type(R)∪ 6error(R)∪ 7error(R)∪ 8type(R)∪
9type(R)∪ 10type(R)∪11type(R)∪ 12type(R)∪
13type(R)∪ 14type(R)∪ 15htype(R)∪ 16htype(R)∪
17htype(R)∪ 18htype(R)∪ 19htype(R)∪ 20htype(R)

This least-fixed point specification of type inference is trans-
formed into the following while-loop:

R := {};
while exists x in rprogram∪ F(R) - R

R with := x;
(1)

The idea behind this transformation is to perform small update
operations in each iteration of the while-loop.

Incremental computation. Next we transform expensive set
operations in the loop into incremental operations. The idea is to
replace each expensive expression exp in the loop with a variable,
say E, and maintain the invariant E = exp, by inserting appro-
priate initializations and updates to E where variables in exp are
initialized and updated, respectively.

The expensive expressions in type inference are all resultsets
and W, that serves as the workset. We use fresh variables to hold

each of their respective values and maintain an invariant for each
of the resultsets, in addition to one for the workset: W = rprogram
∪ F(R) - R. Here we show the invariants maintained for the re-
sultsets corresponding to Datalog-like rules for the compose com-
mands. The rest of the invariants are defined in the same way.

I8type = 8type(R)
I9type = 9type(R)

As an example of incremental maintenance of the value of an
expensive expression, consider maintaining the invariant I8type.
I8type is the value of the set formed by joining elements from
the set of facts of the compose and type relations. I8type can
be initialized to {} with the initialization R = {}. To update
I8type incrementally with the update R with:= x, if x is of
the form [compose,c,c1,c2] we consider all matching tuples
of the form [type,c,t] and add each new tuple [type,c1,t]
to I14env. To form the tuples to be added, we need to efficiently
find the appropriate values of variables that occur in [type,c,t]
tuples, but not in [compose,c,c1,c2], i.e. the value of t, so
we maintain an auxiliary map that maps c to t in the variable
I8compose type shown below. Symmetrically, if x is a tuple of
the form [type,c,t], we need to consider every matching tuple
of the form [compose,c,c1,c2] and add the corresponding tuple
of the form [type,c1,t] to I8type, so we need to efficiently find
the value of variables that occur in [compose,c,c1,c2], but not
in type(c,t). Thus, we maintain an auxiliary map that maps c to
c1 and c2 in the variable I8type compose. These two auxiliary
maps are shown below. The first set of components in auxiliary
maps is referred to as the anchor and the second set of elements as
the nonanchor.

I8compose type = {[[c], [t]] :
[type,c,t] in R}
I8type compose = {[[c],[c1,c2]] :
[compose,c,c1,c2] in R}

Thus, we are able to directly find only matching tuples and consider
only combinations of facts that make both hypotheses true simulta-
neously, as well as consider each combination only once. Similarly,
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such auxiliary maps are maintained for all invariants we maintain
that are formed by joining elements of two sets of facts.

All variables holding the values of expensive computations
listed above and auxiliary maps are initialized together with the
assignment R := {} and updated incrementally together with the
assignment R with:= x in each iteration. When a fact is added to
R in the loop body, the variables are updated. We show the update
for the addition of a fact of relation compose only for I8type in-
variant and I8type compose auxiliary map, since other facts and
updates to the variables and auxiliary maps are processed in the
same way.

case of x of [compose,c,c1,c2]:
I8type ∪:= {[type,c1,t]:
[t] in I8compose type{[c]};
W ∪:= {[type,c1,t]:
[t] in I8compose type{[c]};
| [type,c1,t] notin R};
I8type compose ∪:= {[[c],[c1,c2]]:
[compose,c,c1,c2] in R};

(2)

Using the above initializations and updates, and replacing all
invariant maintenance expressions with W, we obtain the following
complete code:

initialization;
R:={};
while exits x in W

update using (2);
W less:= x;
R with:= x;

We next eliminate dead code — to compute the resultset R only
W and the auxiliary maps are needed; the invariants maintained for
other resultsets, such as I8type and I9type, maintained for the
Datalog-like rules corresponding to the compose commands, are
dead. We eliminate them from the initialization and updates. For
example, eliminating them from the updates in (2), we get:

case of x of [compose,c,c1,c2]:
W ∪:= { [type,c1,t]:
[t] in I8compose type{[c]};
| [type,c1,t] notin R};
I8type compose ∪:= { [[c],[c1,c2]]:
[compose,c,c1,c2] in R};

We clean up the code to contain only uniform operations and set
elements for data structure design. We decompose R and W into sev-
eral sets, each corresponding to a single relation that occurs in the
Datalog-like rules. R is decomposed to Rerror, Rtype, Rliteral,
Rloc, Rarith, Rassign, Rcompose, Rif, Rwhile, Rletvar,
and Rhtype, and W is decomposed to the sets Werror, Wtype,
Wliteral, Wloc, Warith, Wassign, Wcompose, Wif, Wwhile,
Wletvar, and Whtype. We also eliminate relation names from
the first component of tuples and transform the while-clause and
case-clauses appropriately. Then, we do the following three sets
of transformations.

(i) We transform operations on sets into loops that use operations
on set elements. Each addition of a set is transformed to a for-
loop that adds the elements one at a time. For example,

Wtype ∪:= { [c1,t]:
[t] in I8compose type{[c]};
| [c1,t] notin Rtype};

is transformed into:

for [t] in I8compose type{[c]}
Wtype ∪:={[c1,t]
| [c1,t] notin Rtype}

(ii) We replace tuples and tuple operations with maps and map
operations. Specifically, replace all for-loops as follows:

for [t] in I8compose type{[c]}
Wtype ∪:={[c1,t]
| [c1,t] notin Rtype}

is transformed into:

for [c] in dom(I8compose type)
for [t] in I8compose type{[c]}
Wtype ∪:={[c1,t]
| [c1,t] notin Rtype}

We replace while-loops similarly. Also, for each membership
in a map test, we replace [X,Y ] notin M with Y notin
M{X}. For example, the membership test [c1,t] notin
Rtype is replaced with t notin Rtype{c1}.

Each addition to a map M with:= [X,Y ] is replaced with
M{X} with:= Y . For example, the addition to the workset
Wtype.

Wtype with:= [c1,t]

is replaced with

Wtype{c1} with:= t.

(iii) We make all element addition and deletion easy by testing for
membership first. Specifically, we replace adding an element to
a set S with:= X with if X notin S then S with:= X . For
example:

Wtype{c1} with:= t

is replaced with:

if t notin Wtype{c1}
Wtype{c1} with:= t

Note that when removing an element from a workset we do not
need to test for membership of the element, since the element is
retrieved from the workset. Also, when adding an element to a
resultset, we do not need to test for membership, since elements
are moved from the corresponding workset to the resultset one
at a time, and each element is put in the workset and thus in the
resultset only once.

Data structures. After the above transformations each firing
of a Datalog-like rule takes a constant number of set operations.
Since each of these set operations takes worst case constant time
in the generated code, achieved as described below, each firing
of a logic rule takes worst case constant time. Next we describe
how to guarantee that each set operation takes worst-case constant
time. The operations are of the following kinds: set initialization
S := {}, computing image set M{X}, element retrieval forX in
S and while existsX in S, membership test X in S, X notin
S, and element addition S with X and deletion S less X . We
use associative access to refer to membership test and computing
image set.

A uniform method is used to represent all sets and maps, using
arrays for sets that have associative access, linked lists for sets that
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are traversed by loops and both arrays and linked lists when both
operations are needed.

• resultsets:The resultsets, such as Rtype, are represented by
nested array structures. Each of the resultsets of, say, a compo-
nents is represented using an a-level nested array structure. The
first level is an array indexed by values in the domain of the
first component of the resultset; the k-th element of the array is
null if there is no tuple of the resultset whose first component
has value k, and otherwise is true if a=1, and otherwise is re-
cursively an (a-1)-level nested array structure for remaining
components of tuples of resultsets whose first component has
value k.

• worksets: The worksets, such as Wtype, are represented by
arrays and linked lists. Each workset is represented the same as
the corresponding resultset with two additions. First, for each
array we add a linked list linking indexes of non-null elements
of the array. Second, to each linked list we add a tail pointer.
One or more records are used to put each array, linked list,
and tail pointer together. Each workset is represented simply
as a nested queue structure (without the underlying arrays), one
level for each workset, linking the elements (which correspond
to indices of the arrays) directly.

• auxiliary maps:Auxiliary maps, such as I8compose type,
are implemented as follows. Each auxiliary map, say E for a
relation that appears in a logic rule’s conclusion uses a nested
array structure as resultsets and worksets do and additionally
linked lists for each component of the non-anchor as worksets
do. E uses a nested array structure only for the anchor, where
elements of the arrays of the last component of the anchor are
each a nested linked-list structure for the non-anchor.

4. Time Complexity Analysis

We analyze the time complexity of type inference by carefully
bounding the number of facts actually used by the Datalog-like
rules. For each rule we determine precisely the number of facts
processed by it, avoiding approximations that use the sizes of indi-
vidual argument domains.

Size parameters. We first define the size parameters used to
characterize relations and analyze complexity. For a relation r we
refer to the number of facts of r that are given or can be inferred
as r’s size. We refer to the number of nodes in the input program
as the program size and denote that by p. We use the following size
parameters:

• #literal: denotes the number of occurrences of literals in the
program

• #loc: denotes the number of occurrences of locations in the
program

• #arith: denotes the number of occurrences of arithmetic ex-
pressions in the program

• #assignVar: denotes the number of occurrencesof assignment
commands in the program in which a value is assigned to a local
variable

• #assignVarloc: denotes the number of occurrencesof assign-
ment commands in the program in which a value is assigned to
a location

• #compose: denotes the number of occurrences of compositions
of commands in the programs

• #if: denotes the number of occurrencesof if commands in the
program

• #while: denotes the number of occurrences of while com-
mands in the program

• #letvar: denotes the number of occurrences of letvar com-
mands in the program

• p: denotes the size of the program, i.e. the number of program
nodes

• s: denotes the size of the lattice of security types

• h: denotes the height of the lattice of security types

Computing time complexity. The time complexity for a
set of Datalog rules is the total number of combinations of hy-
potheses considered in evaluating the rules. For each rule r,
r.#firedTimes stands for the number of firings for the rule and
is a count of: (i) for rules with one hypothesis: the number of facts
which make the hypothesis true; (ii) for rules with two hypotheses:
the number of combinations of facts that make the two hypotheses
simultaneously true. The total time complexity is time for reading
the input, plus the time for applying each logic rule.

It is possible to precompute all values for the functions Join and
Meet, and, if we do so, any of them can be looked up on O(1) time,
so we assume constant time for the evaluation of Join and Meet.
If the values of Join and Meet are not precomputed, we need to
compute them as needed and include the time complexity of this
computation in the time complexity analysis. The time complexity
of computing Join or Meet for two security types is O(log s),
whereas the time complexity of precomputing all values of Join
and Meet is O(s2×log s).

The algorithm traverses the program top-down multiple times
to infer facts of the type relation for expressions — minimum
expression types, and then traverses the program bottom-up once
to infer facts of the type relation for commands — maximum
command types. Facts of the type relation for variables can be
inferred by use of the LETVAR rules and reinferred by use of the
ASSIGN VAR rule. This can cause other facts of the type relation
to be reinferred. At any point in the evaluation at most one fact of
the type relation is kept for a program node, and that is the one
with the highest type for the program node that has been inferred
so far. The type of each program node can be raised at most h times.

Time complexity for each of the Datalog-like rules for type
inference is shown in Figure 5, along with total time complexity
for type inference. The third column in the figure shows the time
complexity in the case when all values of Join and Meet are
precomputed — in this case we add the time to precompute Join
and Meet to the total time complexity for type inference. Since
the values of Join and Meet needed are looked up in constant
time, the time complexity for each of the Datalog-like rules is
equal to the number of occurrencesof the correspondingexpression
or command. The fourth column shows time complexity in the
case when Join and Meet are not precomputed. The total time
complexity for type inference for secure information flow is linear
in the program size. It is the minimum of O(p×h + s2×log s)
and O(p×h×log s).

5. Experimental Results
To experimentally confirm our time complexity calculations, we
generated an implementation of our algorithm in Python. This im-
plementation was generated using the method found in [ 15], mod-
ified to support partially ordered sets. The generated implementa-
tion consists of 900 lines of Python code. We are using this imple-
mentation to analyze programs of varying size, to determine how
the running time of the algorithm scales. For each program, we re-
port the CPU time analysis took, when run using Python 2.3.5 on
a 500MHz Sun Blade 100 with 256 Megabytes of RAM, running
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SunOS 5.8. Reported times are averaged over 10 trials. We use two
security types in these experiments — low and high, where high is
the type given to secure data and variables. All timing data shown
is for experiments with all global variables having the low security
type.

Since the type system supports a relatively small number of op-
erations, finding programs for real applications it could analyze
proved a challenge. We overcame this by analyzing programs gen-
erated from SCR specifications [14], including specifications for
real applications. SCR specificationsuse a tabular notation, built on
top of a state machine model, to give the behavior of a system. We
were able to modify OSCR, a code generator for SCR [21], to gen-
erate programs using only the operations the type system supports.
This consisted of adding an outer loop that waits for events, rather
than using function calls to notify the generated code of events.
We then extended OSCR to output the abstract syntax tree of the
generated code as datalog facts. This allows us to analyze realistic
systems.

Table 1 gives the results for inferring minimum types of expres-
sions. The first column in the table describes the function of each
program, while the second column gives the program size. The pro-
gram size is expressed as the number of nodes in the abstract syn-
tax tree of the program, the measure of program complexity that is
most relevant to our algorithm. The third column of the table gives
the average CPU time required to analyze each program. The final
column gives the CPU time taken per fact, which should remain
constant, disregarding the effects of the memory hierarchy. The re-
sults show that the CPU time per program node is constant, with
the total CPU time being linear in the number of program nodes.

We also timed the algorithm that infers the maximum types of
commands, given the inferred minimum types of expressions.Since
the input is the set of types of all program nodes, but maximum
types are inferred just for commands, the time complexity of that
algorithm was linear in a combination of the number of program
nodes and the number of commands in the program. The results of
these experiments are shown in Table 2.

6. Related Work and Conclusions

A large amount of research has been done on information flow
analysis since Denning’s pioneering work [ 10, 11]. A survey of
language-based information flow security appears in [ 22]. Various
analysis frameworks have been used, including abstract interpreta-
tion, e.g., [6, 4, 12, 13], and type systems, e.g., [27, 28, 16, 20, 23,
26, 9]. Type-based approaches have been studied extensively, be-
cause types are inherently compositional, provide good documen-
tation as well as correctness guarantees, and seem more familiar to
programmers (who are familiar with standard type systems). As the
survey [22] shows, there are many information-flow type systems.
We focus here on the ones for which type inference algorithms have
been developed. The difficulty of type inference depends on many
factors, notably whether polymorphism is allowed, and whether the
security levels, which in general form a partial order, are assumed
to form a lattice. Volpano, Irvine and Smith present an information-
flow type system for a simple imperative programming language
with local variables, and prove that the type system is sound [ 27].
The language does not have procedures, so there is no polymor-
phism. Deng and Smith give a type inference algorithm for this
language extended with arrays but without local variables and as-
suming the security levels form a lattice [9]. Their algorithm uses
explicit iteration to compute a least fixed point. The worst-case time
complexity of their algorithm is O(n2h), where n is the program
size, and h is the height of the lattice. At a high level, their algo-
rithm and our algorithm are very similar. The main difference is
that, by expressing the algorithm using rules and applying a sys-

tematic implementation method, we obtain a more efficient imple-
mentation, whose worst-case time complexity is linear, rather than
quadratic, in the program size.

Type inference algorithms for languages with polymorphism
typically have two main aspects: generating sets of constraints
during traversals of the program’s abstract syntax tree, and solving
(specifically, checking satisfiability of and simplifying) those sets
of constraints. Basically, the constraints are inequalities involving
meta-variables that range over security levels.

Volpano and Smith give a type inference algorithm for the
language in [27] extended with polymorphic procedures [28]. Their
constraint generation algorithm handles polymorphism in a simple
but impractical (expensive) way: a procedure body is re-analyzed
in each calling context. Checking satisfiability of the constraints is
NP-complete in general, but it can be done more efficiently if the
security levels form a disjoint union of lattices.

Recent work on type-based information-flow security consid-
ers many additional features found in modern programming lan-
guages, such as dynamically allocated mutable objects, subclass-
ing, method overriding, type casts, dynamic type tests, and ex-
ceptions [16, 20, 23, 26]. Myers’ work on JFlow, an extension
of Java with type-based information-flow control, considers only
intra-procedural type inference [16], so users must annotate meth-
ods and fields. Pottier and Simonet consider type inference for an
extension of ML with information-flow types [20, 23]. They use an
existing technique [25] to generate constraints and focus on solv-
ing the constraints. They give an algorithm for solving the con-
straints and point out that advanced techniques will be needed to
optimize it. Sun, Banerjee, and Naumann consider type inference
for an object-oriented language in which polymorphic types may
be given for libraries but (to make type inference more tractable)
mutually recursive classes and methods in the analyzed part of the
program are treated monomorphically [26].

In short, while several information-flow analysis algorithms ex-
ist, they have been developedmanually under different assumptions
and for different language features and different definitions of in-
formation flow, so it is difficult to compare them. Furthermore, rel-
atively little is known about the worst-case or typical time com-
plexity of these algorithms.

In this paper, we presented an approach to systematically deriv-
ing efficient algorithms for type inference for secure information
flow types. We applied the approach to a classic information flow
type system [27] and obtained an efficient type inference algorithm
and a precise characterization of its time complexity. We plan to
apply the approach to information flow type systems for richer pro-
gramming languages, compare the time complexity and precision
of the resulting algorithms, and evaluate their performance on real
applications.
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[5] J.-P. Banǎtre, C. Bryce, and D. L. Métayer. Compile-time detection
of information flow in sequential programs. In ESORICS ’94:
Proceedings of the Third European Symposium on Research in

93



CPU Time CPU Time
Description of Program Number of Program Nodes Total (ms) per Program Node (ms)

Thermostat 89 87 0.0953
Safety Injection System 159 138 0.0889

Shutdown Control Logic for a Nuclear Power Plant 411 408 0.0897
Cruise Control System 465 469 0.0906

Table 1: Time for inferring minimum types for expressions.

CPU Time
Description of Program Number of Program Nodes Number of Commands Total (ms)

Thermostat 89 41 45
Safety Injection System 159 47 51

Shutdown Control Logic for a Nuclear Power Plant 411 122 72
Cruise Control System 465 190 163

Table 2: Time for inferring maximum types for commands.

Computer Security, pages 55–73, London, UK, 1994. Springer-
Verlag.

[6] R. Barbuti, C. Bernardeschi, and N. D. Francesco. Checking security
of Java bytecode by abstract interpretation. In SAC ’02: Proceedings
of the 2002 ACM symposium on Applied computing, pages 229–236,
New York, NY, USA, 2002. ACM Press.

[7] J. Cai and R. Paige. Program derivation by fixed point computation.
Science of Computer Programming, 11(3):197–261, 1989.

[8] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and
Databases. Springer-Verlag New York, Inc., New York, NY, USA,
1990.

[9] Z. Deng and G. Smith. Type inference and informative error reporting
for secure information flow. In Proceedings of ACMSE 2006: 44th
ACM Southeast Conference, Melbourne, Florida, 2006.

[10] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[11] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513,1977.

[12] N. D. Francesco, A. Santone, and L. Tesei. Abstract interpretation and
model checking for checking secure information flow in concurrent
systems. Fundam. Inf., 54(2-3):195–211, 2003.

[13] R. Giacobazzi and I. Mastroeni. Abstract non-interference: param-
eterizing non-interference by abstract interpretation. In POPL ’04:
Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 186–197, New York, NY,
USA, 2004. ACM Press.

[14] C. Heitmeyer. Using the SCR* toolset to specify software require-
ments. In WIFT ’98: Proceedings of the Second IEEE Workshop
on Industrial Strength Formal Specification Techniques, page 12,
Washington, DC, USA, 1998. IEEE Computer Society.

[15] Y. A. Liu and S. D. Stoller. From Datalog rules to efficient programs
with time and space guarantees. In Proceedings of the 5th ACM
SIGPLAN international conference on Principles and practice of
declaritive programming, pages 172–183. ACM Press, 2003.

[16] A. C. Myers. JFlow: Practical mostly-static information flow control.
In Symposium on Principles of Programming Languages (POPL),
pages 228–241, San Antonio, Texas, Jan. 1999.

[17] R. Paige. Real-time simulation of a set machine on a RAM. In
Proceedings of the International Conference on Computing and
Information, volume 2, pages 68–73, 1989.

[18] R. Paige and S. Koenig. Finite differencing of computable
expressions. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):402–454, 1982.

[19] J. Palsberg and P. Ørbæk. Trust in the lambda-calculus. In SAS
’95: Proceedings of the Second International Symposium on Static
Analysis, pages 314–329, London, UK, 1995. Springer-Verlag.

[20] F. Pottier and V. Simonet. Information flow inference for ML.
In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 319–330,
New York, NY, USA, 2002. ACM Press.

[21] T. Rothamel, C. Heitmeyer, B. Leonard, and Y. A. Liu. Generating
optimized code from SCR specifications. To appear in Proceedings
of LCTES 2006: ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, 2006.

[22] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal On Selected Areas in Communications,
21(1):5–19, January 2003.

[23] V. Simonet. Flow CAML in a nutshell. In G. Hutton, editor,
Proceedings of the first APPSEM-II workshop, pages 152–165, 2003.

[24] G. Smith and D. Volpano. Secure information flow in a multi-
threaded imperative language. In POPL ’98: Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 355–364, New York, NY, USA, 1998. ACM Press.

[25] M. Sulzmann. A general type inference framework for Hind-
ley/Milner style systems. In FLOPS ’01: Proceedings of the 5th
International Symposium on Functional and Logic Programming,
pages 248–263, London, UK, 2001. Springer-Verlag.

[26] Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-
based information flow inference for an object-oriented language.
In Proceedings of the 11th International Static Analysis Symposium,
volume 3148 of Lecture Notes in Computer Science, pages 84–99,
Aug. 2004.

[27] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure
flow analysis. Journal of Computer Security, 4(2-3):167–187, 1996.

[28] D. M. Volpano and G. Smith. A type-based approach to program
security. In TAPSOFT ’97: Proceedings of the 7th International
Joint Conference CAAP/FASE on Theory and Practice of Software
Development, pages 607–621, London, UK, 1997. Springer-Verlag.

94


	Introduction
	A Type System for Secure Information Flow
	Lattice model of secure information flow
	Type system for secure flow analysis

	Efficient Type Inference Algorithm and Data Structures
	Expressing type inference in Datalog-like rules
	Generation of efficient algorithms and data structures

	Time Complexity Analysis
	Experimental Results
	Related Work and Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


